R7PCRT DOCUMENTATION PAGE |

i : ’
1 o
: TR SNLY T3ow.]: SEPCRT Darx ; B RS
i _THESISADRR KON
4 . N S U3TLTLE A P R

Hardware Modeling and Top-Down Design Using

VHDL

Dennis P. Morton, 24 1t.

4NN RN NG

: - cey o
o URT NN

LN DRI INGZATON NANS S AND ADDRESSIES)

AFIT Student Attending: Massachusetts Institute of AFIT/CI/CIA- 91-055
Technology

SINIC NG MONITORING AGENC? NAVIES] AND ADDRESS(E3; *0 SPONS_ - N -
AGENCY 30 . .-

AFIT/CI
Wright-Patterson AFB OH 45433-6583

LT

AD-A239 356

TUTT EN AT ARY NOTES

Tr1 3 H8UTON AUAMLABILITY SIATIVIENT 126 D157 BLT 0N

i Approved for Public Release IAW 190-1
i Distributed Unlimited

; ERNEST A. HAYGOOD, lst Lt, USAF

' Executive Officer

PTOAARTRALT e o T O negs)

; cp

: ?:;1: b5

¢ v &

| gﬁ?& GUROTTE T

_ ot T A
» - Gn. AUGOS 1991

R 2 ;
i3

v

TTAIUBIECT TERMS 15. NUMBER Cr PAGES
237

16. PRICE CO0E

17 SECUR'TY ((ASSIFICATION 18. SEC. UTY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 UIMITATION OF d2Taas”
OF TEPORT OF T-'S PAGE OF ABSTRACT

\
\

\
-/
Hardware Modeling

and
Top-Down Design Using VHDL

by
Dennis P. Morton

2Lt. USAF
237 pages

Submitted to the Department of Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology
on May 10, 1991 in partial fulfillment of the requirements for the degree of

Master of Science

Abstract

As digital designs grow more and more complex, some method of controlling this complexity
must be used in order to reduce the number of errors and the time spent on a design. VHDL (Very
High Speed Integrated Circuit Hardware Description Language) promises to ease the design and
verification of complex digital circuits by encouraging the use of top-down design. -

This thesis demonstrates how VHDL, combined with a top-down design methodology,
enables the designer to specify and verify a digital design faster and with fewer errors. The
scoreboard, a section of hardware in the Charles Stark Draper Laboratory’s Fault Tolerant
Parallel Processor, is used as an example to demonstrate the utility of VHDL. The scoreboard is
responsible for message processing within the FTPP and thus has a critical effect on performance.
It also represents the most significant risk of any component in the FTPP. The use of VHDL has
the potential for ensuring an optimal scoreboard design with minimal errors and an improved
design time.

91 8 07 144 91-07266

e = —— i

Hardware Modeling
and
Top-Down Design Using VHDL T

iy =
6

/

Dennis P, Morton

Submitted to the L
Department of Electrical Engineering and Computer Scienc¢ -
in Partial Fulfillment of the Requirements for the Degree of'

Master of Science in L
Electrical Engineering and Computer Science
at the
Massachusetts Institute of Technology
June 1991

© Dennis P. Morton, 1991 .

! ﬂ —' ' :
The author hereby grants to M.I.T. permission to reproduce : S
and to distribute copies of this thesis in whole or in part.

Signature of Author
Department ¢f Electrical Engineering and Computer Science
_ May 10, 1991
{
ol A{k

Certified by
Jonathanf./Allen
Thesis Stapervisor

Certified by ﬁy& ﬁ)ﬁd

P

Bryan P. Butler
Charles Stark Draper Laboratory

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Hardware Modeling
and
Top-Down Design Using VHDL
by
Dennis P. Morton
Submitted to the
Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in
Electrical Engineering and Computer Science

at the
Massachusetts Institute of Technology
June 1991
© Dennis P. Morton, 1991

The author hereby grants to M.1.T. permission to reproduce
and to distribute copies of this thesis in whole or in part.

@Mﬁ £, Motdem,

Signature of Author
Department ¢f Electrical Engineering and Computer Science
M May 10, 1991
Certified by M‘{{’" ,
Jonathan Ac”Allen
Thesis Stpervisor
Certified by Mf
Bryan P. Butler
Charles Stark Draper Laboratory
Accepted by

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

Table of Contents

PR 4,14 0 1T 1) P PPN 9
1.1, Problem Statementccciuiiiiiiiiiiiiiiiiiiirerreiaeirieeeenaans 9

12, Objective.......ccoiiiiiiiiiiiiiiiiieiiiiieiiciiirieeenreerananneacessnnns 10

13, AUdI@NCe......ccciiiniiiiiiiiiiiiiiii et etarrreriaraaraeaas 10

b U Y-V . Y T | P 10

2. Background Information...........cociiiiiiiiiriiiiieieiiieriiiiiiinerrinneonaes 13
2.1. Fundamentals of Byzantine Resilience..............ccccvvvveieena.. 14

22 Exchanges........cccooiiiieiiirariiiieeiieaninereerenasiosesneecansnssonss 15

23, The FTPP...oiieiiiiiiiieatieeietetieseieasensetesennceannnnns 16

2.4, C3 Scoreboard Coneepts ...oovviviieiiiiiiririiiiieieeiieceeeriessensecens 17

241, SERP ... it i et e e 17

24.2. Configuration Table..........ccoceeiiiiiiviinnieniieann... 18

2.4.3. M EOULB. . eciiiieeiiirieneieernnerarieerusrreserorenesroncnnanes 18

2.5. Design Goals........cviiiiiiiiiriiriiiiiiiiiiiiiiiiiieeeiraiiaeaaann 19

3. Hardware Description Languages.........cccccevivvreeieeveniniinivernrnrenennenns 21

3.1 HESEOTY..uniiiuneiiiinieeeeeertneeeeeeeetaeeeeneeennaesaneeeaeeenaaaenns 21

3.1.1. Desirable Featuresccccoiiiiiviiiiiiiincirnernannnns 21

3.1.2. VHDL Impetus and Development...........ccccovnrvenennnnnn 2

3.2, VHDL Overview........vioeieiiiriiiiiiireeriiiiinnsnceeresessannnsseens 233

3.2.1. TheDesign Entity........cccoiiiiiiiiiiiiiiiiiiiiiiieeeannn, 2

3.2.2. The Testbench.......c.ccooiiiiiiiiiiiiiiiiiiiiiiiieeeeenenen, 25

3.2.3. PackBges.......coiiiiiiiiiiii e, 25

3.24. DataObjects....c.ccoiiiiiiiiiiiiiieiiiiiiiiire i reeaaan, 26

3.3. Description Styles Revisitedcc.c.coviiiiviiiiiiiiiinnnnns, 27

B T T S o .37 4]

3.3.2. Signal Assignments..........cceoiiiiiiiiiiiiiiiiiiiiiian, 28

3.3.3. BlIOCKS....oiiiiiiiiiiiiiiiciiii et it aaean 2

3.3.4. Duality....coiiiiii i e e eaeas 29

4. Motivation for Modeling..........c.coiiiiiiiniiiiiiiieaiiiiiieniirrenraeaeenenn, 31

4.1, Top-Down Designccvvvviniiiiiinnreieiniiineererensnrassacnesenreens 31

4.2, Synthesis....oc.cciiiiiiiiiiii i e 35

4.3. Design and Description in One.............cevvviiviiiiiiiiiniinnnens, 3H

4.4. Concurrent Design........... et e et reetar s e et 3*

4.5, ComPleXity ...oovvinieiiiiiiiiiiiir i e it e e aaans K]

4.6, Verification.......ccooiiiiiiiiiiiiiiiiiiiiiiiiiiiie i reaaees 36

4.7 WhennottoUse VHDLcciuiiiiiiiiiiiiiiiiiiiinineeneannns K1)

LR R o U .11 2 S TS 37

5 Behavioral Modeling Considerations..............ccccvuvuieriniiiirieenennnnnnenn. k ¢}

5.1. State Machine Modeling.............c.ccoceviiiiinviiiienciiiiinnennnnn. »

5.2. Synchronous designsccceveiiiiniiiiiiiiiiiniiiiniieanens, 47

L T 5 1 3 3 1 U 438

5.4. Compilation Dependencies.............cccc.eviiivrniinininrineeennenn. 48

5.5. Resolution functions..........coviiiiieeiriiiiiereiienreireereenreneens 49

B5.6. SubDPIOgIrAMScocciuiverniiiiiiniiteniiiiiesereeanrinerensnsreneees 50

6. Scoreboard Functional Description...........cvuviivniiniiiiniiiiinieiniiniiennnes 51
6.1. SERP FOrmMAt....c.c.ocviieiiniiieenieiernennieiiiiineenerneenereennensenne 51

6.2, CT FOMMAt.........ccovvniiiiiiiiiieiieerenteieeneessnenseranessensenens 51

6.3. Goal : Optimize The Common Case..................ccvvenvnereennnnn. 53

6.4. SERP Processing.........c.ccooiuveiiiiiiininiiiiiinenennieeneensenenns 54

10.

6.4.1. Voting.....coviiiiiiiiiiiiiiiiiic it et e 56

6.4.2. Finding Messagesccccvvirniiiinniiieinenviiinensraansn. 60

6.5. Faulty Conditions.........cooevimvieiinniinriiinirnreaiiiircrnnnernnn. 64
6.6. Other Operationscccevvieiiiiiiieirarriinneeecasoererianeeannearas 65
Scoreboard Behavioral Model........cccoovuiiiinuiiiiiiiieiiiiniineeeeriereennnanes 67
7.1, Overall Design........ccciimeiiriiiiiiiiiiieriiiierareracriieeareeranenns 67
7.2. Explanation of Important Sections of Code................cccvinvennn. 68
721, Packages.......ccciiviieiiiiiiaiiiiiiiaaareereeiennnaeans 68
722 EntitiesB.......covviiiiiiiiiiiiiiiirienronerenioneersiieresnnonnnns 74

7.3. Functional Description......ccccotiiiiiiinniiiieiiiecniiireesnnnenens 82
T.3.1. ReSet......covviiiiiiiiiiierioennececnsecnennsessassssncnansenes 82
7.3.2. Clear_ Timeout8.......c.coiivvriiniiieierrrereerriirnreennnnnen 82
7.3.3. Update_ClT ...u.oiiiiiiiiiiiiiiiirrereeinnneeeeeeennnsns 83
7.3.4. Process_new_SERP.............ooiiiiiiiiiiiii 83

I TR 3 ¢ 11 21 V: 1 . 1Y N 84
7.5. Verification and Testing......c..ccccvvrvenirieiereieniniernnincnens. 84
7.5.1. € Program....c...ccceviiiiuininiiecieiinieiiaeeeieneineeanannns 84
752, Testbench.....cccoiiiiiiiiiiiiiiiiiiiiiiii i i, 8

7.6, Limitationscoooiiiiiiiiiiiiiii ittt aaeeneees &
Discussions on Implementation...........oooiiiiivieiiiiiiiiiiiiiiiiiiiiennns 87
8.1. General Purpose Microprocessor............covuvereiriiennnnunnneenss 87
B 2. FPGA .o e e et 89
8.3, Combination.......c.cceiviiiiiiriiiiriiiriieeeaaaaan 90
-1 S . 3 € 0 2 U 91
Conclusions and Recommendations...........ocoeviuviiniiiiniiineinniinnieinnnn. 93
AP ENAIC .. ittt e ettt et tetaaaee ereanes 95
10.1. Glossary of Termscooiiiiieeiiiiiiiiiiiiieeereriaiaieeeeennnns 9%
10.2. Scoreboard Algorithmoooeiiiiiiiiiiiiiiiiiiiii e eneens 96
10.3. Sample Scoreboard Code...........cuivvirnniiiiiiiiiiiiiiiiieeeerannns 105
10.4. Recommended Style Guide...........ccccorviviviiiiiiiiiiiennninees 109
10.5. Pitfalls to Avoidcoviiiiiiiiniiiiiiiiiiiii e eeeaenas 110
10.6. VHDL Behavioral Descriptioncocovviiiiiiiiinnirievnnannens 111
10.6.1. Scoreboard Package.......ccocoveinriiniiiiiiniiininienennen. 111
10.6.2. Address Package............coiviiiiiiiiiiiiiiiiiiiiieanns 115
10.6.3. Voter Packageccccoieiirniiiniinnniniiiiiinineiinnernenen 117
10.6.4. Testbench Package.........cocoevvuiiieniiiiininiuirinienennnnn. 126
10.6.5. Main Control Package..........cc.ccoovvvrvniriniiincrnnnnnnnn. 132
10.6.6. Voted SERP Package.......cccoornivnririirirniinnrenennennnnn. 133
10.6.7. PIDto VID PackAge......ccocouvreiiiiiiaianniineeenreanannnnns 134
10.6.8. Dual Port RAM Packageccccovvvvviiiiiinnnnnneneenn 135
10.6.9. Scoreboard........ccooeiuiiiiiiiiiiiieiiiiiiieiee e, 136
10.6.10. Dual Port Ram.......cccociiiiiiiiiiieieeineeirecnirersrrenenes 142
10.6.11. Voted SERP Memory..........cccuvirvivenernnnerincrennreennens 14
10.6.12. PID to VID Table....ccooooueerieeivrnriiiircrncnenceennnnnnn. 146
10.6.13. VIDs in System Table........ccccccceerrrvunrirrrinnnnnnnnn. 148
10.6.14. Voting and Timeout Hardware........c...ccevrrerrennnnnnnn. 149
10.6.15. Sender.........ccoviveieiiiiniiirireirireiiieerireeiieiireaa 157
10.6.16. Main Controller........ e treeertentetaeaarenrerrererrareaneanen 161
10.6.17. Address Buffer..........c.cccoevviviniiiuiiiriiriiiiiiinennianns 167
10.6.18. Scoreboard Subsystem et eetereratrreraerareraan arnne 168
10.6.19. Testbench.......ccccoeiiiiiiiiiiiiiiiiiiii s 1
10.7. Structural VHDL for theVoting and Timeout Hardware............ 174
10.7.1. Voting and Timeout Hardware...........cc.oooovvveurunnnnnn. 174
10.7.2. Timeout Subsystemccccceiiiiiiiiiiiiiiiininnnane. 182

11.

10.7.3. Timeout Checker........cccvvvvivmiiviirrenrrvnnrieereeesnsennes 186
10.7.4. Timeout Memory........cccivmvriiiriiiiiiiiiiiiiiieeanaenns 188
10.7.5. THMer..ccuiniiiiiiiireieeaeeeresrsannncsesesnesnsnesesesennnnns 189
10.7.6. Voting Subsystem............c.ccooiiiiiiiiiiiiiiiii 191
10.7.7. OneBit Voter.......ccvvvveiiiiiineriitinciieternnnrcsreeseecnnnes 194
10.7.8. One Bit Unanimity Generator................cccoeiiiennnn.n. 196
10.7.9. One Bit Syndrome Accumulator..............ccocevviinenennnn. 198
10.7.10. Eight Bit Voter......coocoiiiiiniriiiiiiiiiiicereeeenens 199
10.7.11. Eight Bit Unanimity Generator.........ccccoceurreeeecnnneee. 201
10.7.12. Eight Bit Syndrome Accumulatorccccoeuunnenn 203
10.8. C Test Vector Generator...........oceceveivereinnreirrnirnreeseenaenanes 206
108.1. File confighcooviiiiiiiiiiiiiiiiiiiiii e 206
10.8.2. File 8bdefs.h.......c.cocvviieviiiiiiirrieeiiirinracaennanes 2207
10.8.3. FHle ChC.oviiiiiriiiiiiiiiirieriittiirreeeeereeeterianeseeeeenenens 209
10.84. File Nf BerD.C...ciiiiiiiiiiiieiiiiiiiiireeriatieerennnnaneneees 213
10.8.5. File BerpP.C.cuuuuiiiiiiiiiiiiiiieeiiiiiiieeerenaiieeirenrnraraanans 215
1086. File wVote.C...ocioeinriirieeiiiiiiiiierieiiiieeeennrenanens 21
10.8.7. File Bend.C...cocvivvinriiiiiiiiiiiiiiiiii i eeeeneenenes 26
10.8.8. File check.C.....oovvvviiiiiiiiiiiriiiierrereriieereeieniennnes 28
10.8.9. File 10.€....ciiiiiiiiiiiiiiiiieiiiiieeeirereiieiieesasnaanaeens 231
10.8.10. File MAIN.C..ccvviiiiiiiiiiiiiiiii i it rererenanenees 233
10.8.11. makefile......oooiiiiiiiiiiiiiii et 236
) 123 - 4 V- O S 237

List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2.1,
2.2,
2.3,
3-1,
3-2,
3-3,
41,
4-2,
43,
5.1,
5.2,
5-3,

5-5,
5-6,
5-7,
5-8,
6-1,
6-2,
6-3,
6-4,
6-5,
6-6,
6-7,
6-8,
6-9,
7-1,
8-1,
8-2,
8-3,

Malicious Failure with Three Computers....................... 1
Minimal 1-Byzantine Resilient System........................ 15
The FIPP ...t iieiteeeriarerareratonananas 16
Sample Entity Declaration.........c.ccoceveevrrnvincrinnniennnns 24
Sample Architecture...........cooviiiiiiiiiiiiiiiiiiiiiiiniiiina, 25
Block Examplecoociiiiiiiiiniiiiiiiiiiiiiiii e 29
Top-Down Design Methodology..........coocomviiiiiiiiiannnnnn. 2
Conventional Design.......cc.covviiiiiiiiiiiiiiiiiiervrnnnnneeas 33
Top-Down Design with VHDL.........c..oovvrrirenriinnnnnen. 34
Example State Diagram.............ccccoeiiiiiiviiniininnienne.s 40
State Machine Package..........cccccccvvrvvniiiicricinernncnnnnns 41
State Machine Entity Declaration..........c..oceemenirvinnnnnnns 41
CASE Statement Example...........c.cccovivvvevieineereeecennninns 42
CASE Variation........ccciiiiiiiiiiiiiiiiiiiereeriiieeenanannns 44
Nested Bliock Example...coocooireiiiiiiiiiiiiiiiiiieiieiinnen, 46
Conditional Signal Assignment Example...................... 47
Compilation Dependencies [VHDLO0L.........ccccvvvvvennnnen.. 49
5] D) 12 38 031173 o 2 PP 51
Configuration Table Entryccoviiviiiiiiiininninnnenns 52
Format of the Presence Bits..............ccocoviiviieiiiieiannnnans 52
Example Configuration Table Entry................ccccooviis 53
Sequential Scoreboard Algorithm............ccocovveeenncnnnnns 55
Conceptual View of the Voter...................cooiiiiiiniann.... 58
Syndrome Format..........coccviiiiviiiniiiiiieniireieeiseinnaenas 50
Example OBNE syndrome.............cccevveiiiiviiiiinnianenn.. 59
Exchange Class Byte Fieldsc.coiiiiiiiiiinnnnen. 60
High-level Partitions of the Scoreboard......................... 68
Implementation Tree............cc.iiiiiiiiiiiiiiiiiiieeeiennns 87
RISC scoreboard..........cooiiiiiiiiiiiiiiiiiiiiieiirerienneaes 88
CVotingCode........coooviiiiiiiiiiii e 89

1. Introduction
1.1. Problem Statement

In order to meet future requirements of extremely-reliable computers with high
throughput, the Charles Stark Draper Laboratory (CSDL) initiated the Fault-tolerant Parallel
Processor (FTPP) project. The FTPP achieved these requirements by combining Byzantine
resiliencel with parallelism via multiple, concurrently executing processors. Cluster 1 (C1),
the laboratory prototype, was completed in 1988. While an excellent proof of concept, the
design possessed design and implementation flaws which were difficult and tedious to find
and rectify. The next FTPP, Cluster 3 (C3)2, was conceived as a third-generation FTPP
suitable for use in field applications.

The scoreboard is a section of hardware responsible for message processing in the
FTPP. In C1, it was implemented with many PALs and RAMs and was very difficult to
debug. Furthermore, flaws were found in the fundamental algorithm. These reasons, as
well as a significant increase in the scoreboard functionality, necessitated a complete

redesign of the scoreboard for C3.

This new design presented many challenges. First, the algorithm required
extensive reworking to achieve the enhanced functionality. Second, the scoreboard’s
complexity mandated the use of good design techniques. Finally, the design had extensive
testing problems which had to be solved. An effective methodology was needed to address
these challenges and come up with the best possible design. VHDL (Very High Speed
Integrated Circuit Hardware Description Language) encourages the use of such a
methodology and has other advantages that made it an effective tool in designing the
scoreboard: 1) it allows design tradeoffs to be investigated quickly and easily; 2) it
simplifies testing and validation of the scoreboard by allowing one test bench to be used
throughout the design process; and 3) it provides implementation-independence for much of
the design cycle.

1 Byzantine resilience is a degree of fault tolerance allowing toleration of arbitrary faults. See section
2.1 for a more detailed explanation.

2 C2 was a minimum Byzantine resilient system designed to demonstrate high-speed fiber optics for
inter-FCR communijcation.

1.2. Obgective

The objective of this thesis is to design and document a fully functional behavioral
scoreboard model in VHDL, both to demonstrate the advantages of VHDL and to accelerate
the design process of the scoreboard. This thesis attempts to show that top-down design using
VHDL yields better designs with fewer iterations. It also presents some guidelines and

techniques to enhance the modeling process itself.

Since the entire design process, from concept to working hardware, cannot be
completed in the amount of time allotted a thesis, the VHDL model is also used to document
the work completed to date. The VHDL model, along with this thesis, will serve to completely

document the work which has been done on the scoreboard.
1.3. Audience

The intended audience for this thesis, besides my advisors, is any engineer
interested in modeling using VHDL, especially at the behavioral level. I have attempted to
structure my writing such that little knowledge of VHDL or fault-tolerance is required.
However, chapter 7 will have more meaning if the reader has at least a working knowledge
of VHDL.

This thesis is also aimed at anyone who is skeptical of the utility of VHDL, especially
those who are wary of any language which is a Department of Defense standard. Hopefully,
the following exercise will persuade these people of the merits of using VHDL to design
digital hardware. '

1.4. Approach

This thesis is a VHDL design example. As such, it is structured to specify the
scoreboard’s design, explain the motivations for using VHDL, enumerate the advantages of
VHDL, and interpret/analyze the VHDL model of the scoreboard with some suggestions for
hardware implementations.

Chapter 2 familiarizes the reader with the concepts of fault-tolerance and Byzantine
Resilience as applied to the FTPP in general and the scoreboard in particular. Chapter 3
introduces VHDL and motivates the subsequent chapter on the advantages of VHDL
modeling. Chapter 5 covers modeling issues such as state-machines, timing, and
synchronous designs. Chapter 6 provides a functional description of the scoreboard. Chapter

10

7 covers the behavioral model of the scoreboard. The final two chapters discuss various

implementation methods and topics for further research.

3

2. Background Information

Since the dawn of the computer age, computer architects have been interested in
constructing fault-tolerant computers to decrease down-time and increase reliability. One
application for fault-tolerance is in transaction-processing systems, which should be fault-
tolerant to make errors unlikely and to allow them to remain “up” while being repaired. One
example is the Tandem line of NonStop® computers. Stratus also makes a line of fault-
tolerant computers, notable for their ability to phone the factory when a part fails. These
computers all have at least one thing in common — they take the approach of estimating and
covering expected failure modes by replicating critical components and voting outputs. For
example, alternate boards of a self-checking pair are powered by separate supplies so that if

one power supply fails, only half of each pair is affected.

The Achille’s heel of most fault-tolerant computers, including those mentioned
above, is malicious faults. If a component fails in such a way that it produces conflicting
outputs, these computers will probably not be able to reach an agreement. Figure 2-1 shows
such a situation using three independent computers connected with bi-directional
communication links. Computer A has failed maliciously and is transmitting conflicting
information to the other two computers. Computers B and C must act off what Computer A has
said3. However, due to Computer A’s malicious failure, no consensus is possible, since no

clear majority exists [Lamp 82].

Computer A might have a sensor attached to it whose data Computers B and C need also.

13

Computer A

yes no

Computer B % T Computer C
e "

he said "ves"

Figure 2-1, Malicious Failure with Three Computers

The ability to tolerate malicious failures is desirable for applications which require
extremely high reliability. Some examples are flight system control, where a failure could
cause the plane to crash, and jet engine control, where a failure could cause loss of the
engine. The Byzantine Resilience [Lamp82] algorithm discussed below guarantees

consensus even in the presence of malicious failures.
2.1. Fundamentals of Byzantine Resilience

A computer which is able to tolerate any arbitrary, single random fault is said to be 1-
Byzantine resilient. Arbitrary means that there are no constraints on what fault modes are
covered; any one fault, no matter how unlikely, may occur with 100% coverage. Byzantine

resilient algorithms exist to cover any number (f) of arbitrary faults.

A fault-tolerant computer is designed with a number of interconnected fault-
containment regions (FCR), each region being incapable of propagating an internal fault to
other FCRs [Butler89]. This is achieved by physical and electrical isolation of the FCRs.
Byzantine Resilience places four formal requirements on a fault-tolerant computer to

achieve 100% coverage of a single arbitrary fault. These requirements are:
1. There must be at least 3f+1 FCRs [Lamp82].

2. Each FCR must be connected to at least 2f+1 other FCRs through unique

communication links [Dolev82].

4

3. The protocol must consist of at least f+1 rounds of communication among FCRs.

This is known as the source congruency requirement {Harper87].
4. The FCRs must be synchronized to within a known and bounded skew [Harper87].

A minimal 1-Byzantine Resilient configuration is shown in Figure 2-2. It contains four
FCRs, each connected to the three other FCRs through bi-directional communication links.

FCR A

FCR B FCRD

FCRC

Figure 2-2, Minimal 1-Byzantine Resilient System

2.2. Exchanges

There are two fundamental methods of exchanging messages in a 1-Byzantine
Resilient system to arrive at consistent data. These two exchange methods are known as
class 1 and class 2 exchanges [Harper87). Each type of exchange will be explained using

Figure 2-2 as a reference.

A class 1 exchange is performed when all FCRs have a message which must be
consistent across the system. This exchange has one phase wherein each FCR sends its
message to the other three FCRs. Eaca FCR then votes the original message plus the three
copies of the message it received to arrive at a consistent message. A class 1 exchange

guarantees validity of the exchanged data.

A class 2, or source congruency, exchange is performed when one FCR has a message
which must be distributed to all other FCRs. All non-faulty FCRs must agree on this
message. This exchange has two phases. In the first phase, the source FCR sends its message
to the three other FCRs. In the second phase, each FCR sends a copy of the message it received
to the three other FCRs. Each FCR then votes the copies (the original is not included in the

voting) of the message to arrive at a consistent result. A class 2 exchange guarantees

validity if the source is non-faulty and agreement if the source is faulty.

23. TheFTIPP

, The Fault Tolerant Parallel Processor was designed to fill the need for an ultra-high

: reliability, high-performance computer. The first prototype FTPP, known as C1, is a 1-
Byzantine Resilient system consisting of four FCRs interconnected by high-speed
communication links [Harper87]. Each FCR contains one Network Element (NE) and four
Processing Elements (PE). The physical configuration is shown in Figure 2-3. The PEs are
single-board computers, while the NEs are custom hardware which perform the Byzantine

FCR

- ——

2999

OO

3888

Figure 2-3, The FTPP

C1 provides the capability to logically group PEs together into fault masking groups
(FMG) of two, three, or four processors to enhance the reliability of critical tasks. The
members of a FMG run the same code and periodically exchange messages to ensure that
they are operating on the same inputs and producing the same outputs. Each FMG is treated

as a single entity, or virtual group, for purposes of sending and receiving messages. When a

FMG is sent a message, all PEs in the group receive a copy.

All messages in C1 are exchanged between virtual groups. A virtual group can be
either a FMG or a single PE. Thus every PE in the system has two “addresses,” its physical
ID, which indicates its (NE,PE} location, and its virtual ID, which other virtual groups use to
send it messages. The NE maintains a data structure called the configuration table (CT)
which translates virtusal IDs to physical IDs. Passing messages in this manner allows
healthy PEs to transparently assume the tasks of faulty PEs.

When a virtual group wishes to send a message, it writes an exchange request into a
FIFO (First In-First Out memory) in the NE. Periodically, each NE assembles this
information into a Local Exchange Request Pattern (LERP) [Harper87]. Four source
congruency exchanges are performed on the LERPs to ensure that all the NEs have
consistent copies of the four LERPs. The aggregate of the four LERPs is called the System
Exchange Request Pattern (SERP) [Harper87). The SERP is delivered to the scoreboard, a
section of hardware internal to the NE. The scoreboard processes the exchange requests in

the SERP to decide which messages to exchange.
24. (3 Scoreboard Concepts

The C1 scoreboard possessed design and implementation flaws which were difficult
to find and rectify. Similar flaws are intolerable in the fieldable C3, so it was decided to
completely redesign the scoreboard from scratch. The rest of this chapter introduces the
functions of the C3 - -oreboard, which in many ways closely resembles that of C1. It describes
the SERP and configuration table and provides an overview of timeouts. Chapter 6 contains
the complete functional description of the scoreboard.

24.1. SERP

Periodically, each NE polls its own PEs to determine four pieces of information :
1. Does the PE have a message to send (is its OQutput Buffer Not Empty, OBNE)?
2. To whom will it be sent (destination virtual ID) ?
3. What type of message is it (i.e. class 1, class 2, other)?

4. Can the PE receive a message (is its Input Buffer Not Full, IBNF) ?

17

Once this information has been gathered for each PE, the combined information
inside each NE is assembled into the Local Exchange Request Pattern (LERP). The NEs then
execute a source congruency exchange to arrive at a consistent aggregate of the four LERPs,
the System Exchange Request Pattern (SERP). The SERP is then passed on to the scoreboard

for processing.

SERP entries are indexed by processor ID (PID) and network element ID (NEID). In
other words, the first PE in the system (NE 0, PE 0) has the first entry in the SERP and so on
traversing the NEs and PEs. The scoreboard, however, must read all the SERP entries
corresponding to a VID in order to vote them. Therefore, -, me method of mapping PIDs to
VIDs must exist. The data structure which implements this mapping is called the
configuration table (CT).

24.2. Configuration Table

All PEs are combined into virtual groups composed of one, three, or four members
known as simplexes, triplexes and quadruplexes (quads). The members of a virtual group
are addressed in aggregate through the VID number. Unlike C1, C3 does not support virtual
groups with two members since such a virtual group provides no fault masking capability.
Each member must reside on a different NE to satisfy the isolation between FCRs necessary

for Byzantine resilience.

Because PEs deal with virtual addresses and NEs deal with physical addresses, there
must be a way of mapping PEs to VIDs. The data structure which performs this function is the
configuration cable (CT). Each entry in the CT corresponds to one VID4 and contains the
redundancy level of the VID, a bit field denoting the NE locations of the members of that VID,
the PIDs of all the VID’s members, and a value to use when performing timeouts on the VID.

2.4.3. Timeouts

Timeouts are required because PEs are functionally synchronized. They arise from
the need to be able to detect the absence of a message (Lamp82). They allow the scoreboard to
ignore faulty PEs who disagree with the other members of the virtual group for a given period
of time. For example, if one member of a VID had its power turned off, its OBNE and IBNF

4 From this point on, the term VID denotes a virtual group.

18

. A ——

bits would never get asserted. Without timeouts, that virtual group could not send or receive

messages because agreement between members would never be achieved.

A timeout is begun on a virtual group whenever a majority, but not a unanimity, of its
members have their OBNE or IBNF bits set. If the timeout expires before unanimity is
observed, the OBNE or IBNF bit for the virtual group will be set. The OBNE and IBNF
timeouts are handled independently. The exact protoco! and rules for starting and checking

timeouts will be discussed in section 6.4.1.4.

2.5. Design Goals

The C3 scoreboard presented many design challenges. First, the algorithm used
required detailed specification to ensure that all tenets of Byzantine resilience were
followed. Second, because of the complexity of this algorithm, the hardware to implement it
had to be carefully designed and optimized. This process by its very nature would involve
many design iterations. Finally, the testing strategy of the design required complex test-

generation algorithms itself,

Because of these challenges, the top-down methodology was thought to be the wisest
method to use for designing the scoreboard. It was also felt that VHDL would allow the design
to be tested and optimized with the least amount of effort.

3. Hardware Description Languages

This chapter provides an overview of the major features of hardware description
languages in general and VHDL in particular. An in-depth discussion is beyond the scope of
this thesis. However, the following discussion presents the features which are important for
understanding the scoreboard VHDL model. I recommend reading this chapter even if the
reader has worked with VHDL before since it presents my view of the language (which is
very likely different from other views).

The chapter begins with a brief history of hardware description languages (HDL)
and the impetus behind their development. It then covers desirable features of an HDL. The
rest of the chapter is devoted to the development and features of VHDL.

3.1. History

Hardware description languages were originally developed in the early 1970’s to
simplify the design of computer hardware. With the advent of large scale integration,
schematics alone became less able to convey sufficient information about a design.
Furthermore, there was an increasing need to describe and document designs at a higher
level of abstraction. The new logic simulators of the time also required a means to describe a
design [Lip 77].

HDL research caught fire with the promise of simplifying the design of increasingly
complex computer circuits. It wasn’t long before many HDLs existed, each exhibiting
different strengths but none of which could be used for all levels of the design process [Lip 77].
In 1973, the ACM and the IEEE formed a combined, ad-hoc committee with the goal of
attempting to standardize HDLs [Lip 77). The committee was interested in creating standard
features which all HDLs should incorporate. However, they did not wish to stifle HDL
research so they proposed only a base ine feature set [Lip 77).

3.1.1. Desirable Features

An HDL must possess certain features in order to be effective and useful. First, and
most importantly, it must support concurrency since pieces of hardware by nature operate in

parallel. Most general purpose programming languages do not support parallelism, thus

21

making them poor choices for hardware modeling® [Lip 77). A good HDL should also support
differing levels of abstraction, even within the same model, but not force the modeler into
using any particular style. Some common levels of abstraction, from most abstract to least,
are algorithmic, dataflow, and structural. Finally, an HDL should provide a built-in model
of time to make it useful for timing checks.

3.1.2. VHDL Impetus and Development

In 1980 the U.S. Government launched the Very High Speed Integrated Circuits
(VHSIC) program with the goal of significantly increasing the performance and density of
integrated circuits. Very soon afterwards, however, the Government realized that to help
different contractors work together efficiently and ensure the reusability and
maintainability of designs, a standard method to communicate design data was needed.
Furthermore, the densities of VHSIC chips and the complexity of the resulting systems
exposed the need for a method to smooth the design process and manage the huge amounts of
design data [Wax89). The VHDL program was born from these needs.

The VHDL program was officially begun in 1981 with an initial meeting of people
from government, academia, and industry [Wax89]. The original language contracts were
awarded to Intermetrics, IBM, and TI, with Intermetrics being the prime contractor. The
IEEE, also recognizing the need for a standard hardware description language, began a
standardization effort in 1986, the same year in which Intermetrics released the first VHDL
toolset. IEEE Standard 1076, passed in December, 1987, standardized the VHDL language
(Wax89].

At the time of standardization in December, 1987, only one crude VHDL toolset
existed. By 1991, at least half a dozen commercial VHDL toolsets and a number of free
university VHDL toolsets were available. Nearly every major CAE vendor has announced
or is shipping a VHDL product, which indicates how well VHDL has become accepted both

, inside and outside government circles. VHDL promises to become nearly as pervasive as
schematic entry systems, with an even greater impact on design productivity and

automation.

Though many papers exist on such a subject.

3.2. VHDL Overview

VHDL is a concurrently executed language with & intrinsic sense of time. This
means that parts of a given model will appear to execute concurrently. All VHDL statements
are scheduled to execute at a given point in time and are executed sequentially® within a
single delta — an infinitesimally small, but non-zero, unit of time. The simulation time is
then advanced to the next set of scheduled statements which are executed in the next delta.
Each such execute-update cycle is known as a simulation cycle [RL 89]. The time aspect of
VHDL is complex and full of pitfalls. The author suggests reading Lipsett, Schaefer, and
Ussery’s excellent book “VHDL : Hardware Description and Design” for a more detailed
description of timing in VHDL (especially Chapter 5).

The general model on which VHDL is based is composed of three distinct,
interrelated models : behavior, time, and structure [RL 89)]. The model of behavior allows the
designer to specify the function of an object without regards to its internal structure. The
structural model allows the designer to describe an object’s function using simpler,
interconnected objects. The model of time, perhaps the most important aspect of VHDL,
allows the designer to embed timing information in the model. The following sections

explain how VHDL implements these models.

3.2.1. The Design Entity

The ~rincipal hardware abstraction in VHDL is the design entity [RL 86]. A design
entity is of two fundamen.t,al parts : the interface and the design body. An
important feature of the language is that more than one design body can exist for a given
interface. Different bodies can focus on different levels of hardware abstraction, for
example. A VHDL model can be composed of any number of design entities connected
together.

The design entity’s interface is described by an entity declaration. This declaration
contains an arbitrary number of ports and generics (though neither is syntactically
necessary) which are used to pass information into and out of the design entity. The
interface represents the only portion of the design visible outside the entity. The design body

6 Sequentially because VHDL platforms (at least as of this writing) all run on uniprocessor systems.
Simulation speed would be greatly enhanced if VHDL ran on a paralle] processor, though.

2

e —

is composed of an architecture declaration and an optional configuration specification. The
function of the entity is implemented inside of the architecture. The following sections
describe the design entity in more detail.

3.2.1.1. Interface Declaration

The design entity interface is contained in an entity declaration. A sample
declaration is shown in Figure 3-1. This declaration describes the interface to a 2-to-1

multiplexor.

ntity multiplexor is
ort (a,b : in bit;
select_line : in bit;
output : out bit
);
d multiplexor;

Figure 3-1, Sample Entity Declaration

The ports of an entity are its communication channels with the outside world [RL 86].
A port declaration consists of a mode and a type. The mode specifies the direction of
information flow through the port. A mode of in7 specifies input only, a mode of out specifies
output only, and a mode of inout specifies bidirectional flow. The other two modes, buffer and
linkage, are special. Their meanings can be found in the IEEE VHDL Language Reference
Manual (LRM) [IEEES88).

A port type specifies the data values which the port can assume [RL 86]. For example, a
standard data type is bit, which can assume the values ‘0’ or ‘1’. Another common type is
integer. VHDL also supports composite t);pes such as arrays and records. It is important to
note that VHDL is a strongly typed language.

An entity declaration may also contain generics. Generics are constants used to
increase the generality of an entity. A common use for generics is to pass timing
information into an entity. This way, components of the same family can be substituted into
a design without writing separate design units for each one. For example, if a design
requires three NAND gates each with different timing, only one design unit need be written
if generics are used to pass in the timing information.

7 For the remainder of this thesis, all VHDL keywords will be placed in bold letters.

p.

3.2.1.2. DesignBody

The function of the design entity is specified in an architecture. A sample
architecture for the multiplexor is shown in Figure 3-2. VHDL supports three basic styles of
functional description: behavioral, dataflow, and structural. Pchavioral descriptions are the
most abstract. They specify the output response to the inputs in algorithmic terms. Usually,
little structure is implied. A dataflow description describes a function in terms of
concurrently executing register transfer level (RTL) statements (Figure 3-2 is a dataflow
description). It is less abstract than a behavioral description. The least abstract description
style is structural. This style consists of interconnected components. Each component is
instantiated in the architecture and wired together using signals. An architectural body is
not limited to any one description style. Any mixture of the aforementioned styles may be

utilized within the same architecture body.

‘architecture dataflow of multiplexor is
begin
output <= a when select_line = ‘0’ else
b;
end dataflow;

Figure 3-2, Sample Architecture

The optional configuration specification binds a design body to an instantiated
component. It provides the capability to bind an architectural body’s components to similar,
but not identical, design entities. For example, if three components are required which are
functionally identical but differ in their timing, a configuration can be used to specify the

timing data for each component.

8.2.2. The Testbench

A VHDL testbench is the highest level entity in a given simulation. It instantiates a
design and drives the inputs in some prescribed manner. It also can perform sophisticated
error checking because it has the power of a general purpose programming language at its
disposal (see section 4.6). Using a testbench to test a design eliminates simulator dependence

since no proprietary simulator command language is required.

3.2.3. Packages

Packages provide the VHDL modeler with a convenient method to group constants,
types, signals, and subprograms so as to make them visible to multiple design units. A

package is composed of two parts, the package declaration and an optional package body. The
package declaration contains the constant, type, and subprogram declarations, while the
package body assigns values to the constants and fleshes out the subprograms. VHDL does
not require every package to have a body. However, changes to the package body do not
require design units referencing the package to be recompiled, whereas changes to the
package declaration require recompilation of all design units referencing the package (see

section 5.4).

3.2.4. Data Objects

To fulfill its function as a modeling language, VDL contains three standard data
objects: signals, variables, and constants. The fundamental data object in VHDL is the
signal. Each signal is represented conceptually as a set of time-value pairs. The signal
assumes the value in the pair at the simulation time specified. Each time a signal is
assigned a value, a new time-value pair is added to the list® . Signals can be scheduled to

take on a value after a given amount of time, such as in the statement
signal example 1: signal clock : bit;
clock <= not clock after 10 ns;
They can also be assigned conditionally, such as in the following example
signal example 1: signal output : bit;
output <= ‘1’ when clock = ‘0’ else ‘0';

Signals are also used to wire together components in a structural description.

As with most programming languages, VHDL provides the capability to declare and
use variables. However, their use is much more restricted than that of signals because of the
concurrent nature of VHDL . Variables can only be used within subprograms or processes to

prevent them from being visible to multiple, concurrently executing processes.

variable example : variable index : integer:;
index := index + 1;

VHDL provides the ability to define and use constants. The constant must be

assigned a value when it is declared, except for deferred constants in a package declaration.

This is not always true. The addition of a new time-value pair depends on what timing model,
transport or inertial, was used and on the present time-value list. The meanings of each model can
be found in Chapter 5 [Lip89).

constant example : constant clock_period : time := 100 ns;
8.3. Description Styles Revisited

This section discusses some of the constructs within VHDL which facilitate the
different modeling styles (i.e. behavioral, dataflow, and structural).

3.3.1. Processes

The process is VHDL’s fundamental behavioral modeling construct as well as the
fundamental unit of concurrency. All VHDL expressions have a corresponding process. A
process is composed of three parts : the process declaration, an optional sensitivity list, and
the process body. Note that if the sensitivity list is omitted, then at least one wait statement
must be included®. Without either, the process will never suspend execution and thereby tie
up the simulation. A single process may not have both a sensitivity list and a wait statement.
The statements within a process execute sequentially within one unit of delta time, while all

the processes in a given simulation execute concurrently.

A process is executed when one of three conditions is met. First, all processes are
executed once up to the first wait statement (or entirely if a sensitivity list is included) when
the simulation begins. Secondly, a process is executed when a signal in its sensitivity list
changes. Finally, process execution resumes when the condition attached to a wait statement

is met.

The following example shows a 2 to 1 synchronous multiplexor modeled using two

different styles of processes, one with a sensitivity list and one with a wait statement.

package mux_package is
subtype mux_type is bit;
subtype control_type is boolean;

constant clock_active : control_type;
constant select_a : control_type;
end mux_package;

package body mux_package is
constant clock_active : control type := true;
constant select_a : control_type := true;
end mux_package;

use work.mux_package.all;
entity two_to_one_mux is

This is not syntactically required. The analyzer will only give a warning that the process has neither
8 sensitivity list nor a wait statement.

generic (output_delay : TIME
poxrt {(a,b : in mux_type:
select_line :
clock :
output
)i
end two_to_one_mux;

in control type:;
: out mux_type

:= 10 ns);

in control_type;

Architecture 1

Axrchitecture 2

architecture two_to_one_mux_behavior of
two_to one_mux 1is
begin
behavior : prooess (a,b,select_line,clock)
begin
if clock = clock _active and clock’event then
if select_line = select_a then
output <= 3 sfter ourput_delay;
else -
output <w b after output_delay;
end if;
end if;
end process;
end two _to_one_mux_behavior;

architecture two_to_one_mux_behavior of
two_to_one_mux s

begin
behavior : process
begin
wait until clock = clock_active and
clock’event;

i
if select_line = select_a then
output <= a after output_delay;
alse
output <= b after output_delay;
end if;
end process;
end two_to_one mux_behavior;

The package declaration contains two subtypes which abstract away the mux’s input,

output and select line types. This allows smooth conversion from high level modeling, where

booleans and integers reign, to low level modeling where bits are prevalent. The two

architectures given represent the two basic process styles : sensitivity lists and wait

statement. Both architectures assign a new value to the output only on a rising clock edge. In

architecture 1, the first if statement is executed each time signals a, b, select, or clock are

updated but doesn’t become true until a rising clock edge. The edge is detected using the

predefined attribute 'event. This attribute returns True when an event has just occurred on

the attributed signal and False otherwise. In architecture 2, the process suspends at the wait

statement until a clock rising edge. It then executes and suspends again at the wait

statement. These two examples demonstrate two different methods of achieving the same

result, a situation which occurs often in VHDL.

3.3.2, Signal Assignments

Signals may also be assigned values outside of processes!0. All forms of signal

assignment outside of processes are concurrent in nature. For example, the following two

assignments occur simultaneously :

10
processes.

A duality, discussed in section 3.3.4, exists between signal assignments inside and outside of

architecture example of example is
begin

a<=b+ 1;

c <=b + 3;
end example’

VHDL elso offers the modeler selected signal assignments, which are essentially case
statements, and conditional signal assignments, which are essentially cascaded if-then-
else statements (section 3.2.1.2 contains an example).

3.3.3. Blocks

Blocks are used in VHDL to organize groups of concurrent statements within an
architectural body. The main advantage of blocks is that the block declaration can include a
guard expression. This expression can be used to control signal assignments within the
block!!. Including a guard expression has the effect of creating an implicit Boolean signal
within that block called “guard” which is True when the guard expression evaluates to True
and False otherwise. Signal assignments within the block can be made conditional on the
guard signal by using the reserved word guard. Figure 3-3 illustrates this technique. The
signal test is only assigned the value ‘0’ on the rising edge of the clock because it is a guarded

assignment. As we will see in chapter 5, blocks can be used to mndel state machines.

architecture block_examrle of plock_example is
signal test : bit:

begin
example : block (clock = ‘1’ and clock’event)
begin
test <= guarded ‘0’ after 1UU ns:
end block;

end block_example;

Figure 3-3, Block Example
3.3.4. Duality

VHDL has a very strong duality between concurrent and sequentially executed
statements. If an action is implemented using concurrent signal assignments, there is an
equivalent way to do the same thing using a process statement. The following example

demonstrates this duality:

11 Blocks car also have ports and generics just like entities. This is to ensure duslity, a concept
discussed in the next section.

Concurrent Sequential

process (input)
begin
i€ input = ‘1’ then
output <= true when input = ‘l’ else output <= true;
false; else
output <= false’;
end if;
end process;

VHDL also allows concurrent as well as sequential subprogram calls. Subprogram calls

appearing within a process are sequential while those outside of any process are concurrent.

An exact duality also exists between component instantiations and blocks. An
instance of a component inside an architecture can be replaced with a block statement with

the same ports and generics as the component.

4. Motivation for Modeling

With all the hoopla surrounding VHDL, many people are asking “Why should I use
it?” This chapter attempts to answer that question. It shows how VHDL can be used to shorten
the design cycle and improve the quality of designs. In a few short years, VHDL will become
ubiquitous in the digital design realm.

It is important to note that at the present time VHDL is not universally applicable to
digital designs. Most of the tools are still too immature and standard model availability is
still too limited for VHDL to be used for board-level design. However, tools are immediately
available for ASIC design.

The first section discusses how to apply top-down design with VHDL. Subsequent
sections cover the advantages VHDL has over gate-level design. These relate to design and
description, concurrent design, complexity, and verification. The final two sections discuss

when not to use VHDL and caveats for its use.

4.1. Top-Down Design

One of the great powers of VHDL is that it encourages true top-down design12. This
methodology specifies that a design begins at a very abstract, behavioral level and is
gradually worked down to a structural (gate) level. Each successive abstraction level is
tested against the previous higher level for equivalence. Figure 4-1 displays the top-down
method symbolically [Pain91). Each lower level in the pyramid represents a more complex,
less abstract step in the design cycle.

12 Thisisnotto say that low-level design decisions can be completely deferred until the end. True top-
down design typically means designing from the middle-out.

31

Top Down Design Pyramid

Level 1 Specification and Requirements

Level 2 Behavioral Modeling

Level 3 f \ Register Transfer Level
Level 4 / \ Gate Level
Level 5 / \ Layout and Back-Annotation

CHIP

Figure 4-1, Top-Down Design Methodology

A true top-down design methodology can greatly simplify ASIC design. To see this,
let’s examine a typical design cycle with and without VHDL. Figure 4-2 shows the
traditional design cycle (no VHDL). In general, the first task is to functionally specify the
system — what inputs the design has and the functions it performs on those inputs to produce
the output. A testing strategy is also developed at this poini. The design is then parceled out to
the members of the design team who begin drawiné schematics, writing Boolean equations,
and performing various other low-level design tasks. This is equivalent to skipping the
second level of the pyramid. Concurrently, test vectors are generated. As each partition is
completed, it is tested and revised, if necessary. When all partitions are complete, they are
assembled and tested. At this point, the design, unless it is very small, will probably not
work. Several (possibly extensive) revisions must be made before the design is complete and
ready for placement, routing, and final simulation. If major architectural changes must be
made the design will require extensive modifications. Thus, this method requires that a
system be well-specified before actual design takes place to avoid compromising
performance and/or functionality later in the design cycle.

System
Specification and
Testing Strategy
t High-Level
! extensively revise Partitioning

Schematic Test Vector
Generation Development

|

Block Level
Verification

|

Integration and
Full System

. Verification

| J

Design Place and

Route
Final Simulation

Figure' 4-2, Conventional Design

Figure 4-3 shows the same design process using VHDL. This process follows the top-
down methodology much more closely than does the conventional approach. The first two
steps are again system specification— testing strategy and high-level partitioning. The third
step when using VHDL is to develop behavioral models of the high-level components. These
models are verified separately, “assembled” and tested with the VHDL testbench. Revisions
at this level are inexpensive since even a complete redesign involves rewriting a relatively
small amount of code. High-level architectural trade-offs can be made at this point. Once
this initial model is complete, it can serve as the reference for subsequent, more structural
models. Using VHDL at this level has the further advantage of allowing incremental testing
of components. For example, if one team finishes their section before the others, their section
can be substituted into the model in place of the behavioral model and tested by changing

B

configurations. The use of VHDL causes only minor revisions with respect to the level of
abstraction at which they exist. In other words, the most radical modifications to the design,
such as architectural tradeoffs, are made at the higher levels of abstraction where they are
more tractable.

System
o Specification and
Testing Strategy
High-Level
Partitioning
i !)
VHDL Behavioral | { VHDL Behavioral § § VHDL Behavioral
Models of Models of Models of Write VHDL
Partitions Partitions Partitions
revise
Verify Partitions
z Verify Initial
; Model
' : v
Structuralize Structuralize Structuralize
Model Model Model
3 J]
Verify Against
Reference Model
Construct Design

Figure 4-3, Top-Down Design with VHDL

As Figure 4-3 further indicates, test development can occur simultaneously with
model development. A VHDL testbench (see Section 4.6) is a very flexible and powerful
means to test a component. This testbench, once completed, can be used to test models at every
level of abstraction with little modification.

The light grey line from the bottom to the top in Figure 4-3 represents respecification
of the system after the gate-level models have been completed. This could happen if non-
synthesizeable behavioral models are written (such those using access types). However,

writing realistic behavioral models avoids costly redesign.

4.2. Synthesis

VHDL synthesis is perhaps the most exciting aspect of VHDL. Current synthesis tools
are able to directly synthesize register-transfer level VHDL into a gate-level netlist.
Synthesis can be an enormous time-saver. At the time of this writing, the best synthesis tools
are equivalent to a digita! designer with 14-15 years experience [Bohm91). This makes them
suitable for nearly any design.

VHDL synthesis also provides the ability to use VHDL throughout the entire design
process, from concept to silicon. Even without synthesis capability, though, VHDL would still
be very usefu! Its use would cease at the RTL level where conventional design techniques
would be more efficient. Synthesis avoids the need for this break in the top-down design
methodology.

4.3. Design and Description in One

Another feature of VHDL is that it is actually two languages in one: a design
language and a description language [Wax89). Thus, it is useful for designing, testing, and
documentaticn - well written VHDL model is, in fact, self-documenting. Unlike a
schematic diagram, which is practically useless in determining a system’s overall
function, a VHDL model (with accompanying testbench) can be read by humans and

simulated by a machine, thereby forming a bridge between function and representation.

As a description language, VHDL is impressive in its ability to convey a designers
intent. The downside to this is that VHDL is very verbose (like Ada). However, using VHDL
becomes second nature after a couple of months and many tools are available which help the
designer cope with the verbosity!3.

13 Por example, entity-architecture-configuration templates can be used to avoid retyping.

K

4.4. ConcurrentDesign

VHDL modeling, due to the properties of the design entity, can proceed concurrently
with testing. Furthermore, different designers can work on separate subsections
independently and expect their various components to work together. All that is required is

agreement on interfaces and function.

4.5. Complexity

VHDL provides many features for managing design complexity. First, VHDL
supports design at all levels of abstraction, from the algorithmic level to the gate levell4.
Thus, when a design is in its infancy, its function can be specified as an algorithm which
operates on abstract data types such as records, arrays, and integers. As the design matures,
the abstract components can be replaced with models which operate on bits and bit vectors and

specify their behavior using concurrent signal assignments.

Another complexity management feature is the configuration statement. Using the
power of the configuration statement, one of several models can be selected for testing. Also,
configurations allow the same component to be wired in with different generics. An example
of this is a design which requires many NAND gates, some of which have different timing
than the others. Configurations also allow the re-wiring of a components ports. This could be

used in fault-testing, for example, to determine the affect of wiring a pin to ground.
4.6. Verification

VHDL makes the power of a complete, general purpose programming language
available to test a design. It allows the designer to use complicated dynamic test structures
and sophisticated hardware handshaking to test a design. VHDL provides these capabilities
in a simulator independent manner. While some simulator command languages have the
previously mentioned capabilities, none are portable across simulators. A VHDL testbench
is guaranteed!® to run on any simulator which supports VHDL since VHDL is non-
proprietary.

14 Transistor-level modeling can be done [RW 89), but it is much more difficult because VHDL has no
direct constructs to support analog behavior. '

15 The TEXTIO package is an exception to this rule since it is ambiguously defined in the LRM.
Portability may not be perfect if this package is used.

»

Another VHDL verification advantage is that functional test vectors can be derived
directly from the testbench with little or no modification. VHDL practically eliminates the
problem with ASICs passing foundry vectors but failing to work in the system.

Because VHDL is a DoD and IEEE standard, designs produced today using VHDL
can still be simulated five years in the future, even if the original tool is no longer available.
Thus, effort expended in VHDL modeling is never wasted because the standard insulates the
modeler from company failures and tool obsolescence. Furthermore, VHDL models will

accelerate re-implementation of a design at a later time.

4.7. When not to Use VHDL

Though VHDL can be extraordinarily useful, there are situations where it should not
be used (at least currently). One such instance is in designs with mixed analog and digital
hardware. VHDL simply cannot adequately model the analog section, though some people
claim it can. VHDL could be used to model the digital section (with all the benefits thereof).
However, a full system simulation would be very difficult since a link between the analog
simulator and VHDL would have to be established (via files, pipes, etc.). Mixed analog-

digital designs complicate simulation and verification.

Another situation in which the advantages of using VHDL are diminished is in
incrementally updating a previous design which didn’t use VHDL. In this case, a VHDL
model of the entire design would have to be written and verified from scratch. If the fix is
minor, VHDL probably shouldn’t be used. However, if the design might be re-targeted to a
different technology at a later date, developing a VHDL model and testbench for it would not

be in vain.
4.8. Caveats

Throughout this chapter I have attempted to explain the overwhelming advantages of
using VHDL for digital design. This final section lists some warnings about using VHDL.

w The strongest caveat deals with transitioning a design from the behavioral level
to the structural level. The smoothness of this process depends in part on the port
types of the entities in the original behavioral model. Types which are easily
translated to bit representations make for a smoother transition. Another danger
lies with non-buildable constructs. Writing unbuildable code in VHDL is easy,

-

—~

80 care must be taken to avoid constructs with no hardware analog, such as access

types (access types are pointers).

w Though VHDL possesses tremendous power for testing, it cannot test all designs.

For example, if a design requires a large number of test vectors which can only be
produced using a random algorithm, VHDL cannot do the job. In this case, a C
language program could be used to write test vectors to a text file which the VHDL
testbench could then read in and apply!6.

Some people may look upon VHDL as the death blow to hardware engineers. They
may point out that developing VHDL models is the task of software engineers.
They could not be more wrong. Though software engineering principles are
necessary in managing model development, coding in VHDL is much like

designing hardware.

The need for careful planning at the inception of a design has not been
eliminated. With excellent synthesis tools available, it is tempting to begin
“playing” with the tool immediately after a design has begun. This is
unproductive. A thorough understanding of aggregate hardware requirements is

necessary before synthesis should be attempted.

16

This is what I had to do with the scoreboard VHDL model.

3

5. Behavioral Modeling Considerations

The purpose of this chapter is to present issues related to abstract behavioral modeling
in VHDL. An abstract behavioral model is one in which very little implementation specific
information is used. For example, records and integers are used instead of bits and
bit_vectors. The advantage of abstract modeling is that such things as data path width and
address spaces are deferred until the implementation phase of the design. The disadvantage
is that, before the model can be converted to a physical behavioral model, the entity
declarations must be changed. This can be difficult and time-consuming in a concurrent
design environment. Yet, for an algorithm as complicated as the scoreboard’s, the
advantage of quicker and easier functional verification outweighs the need to rewrite entity

declarations.

The first section discusses the various methods for modeling state machines. State
machine modeling is important because the scoreboard model contains many state
machines, as will most VP)L models. The second section covers high-level modeling
considerations such as synchronous designs and timing. The third section discusses how to
use VHDL’s compilation dependencies. The fourth section discusses the use of resolution

functions in behavioral modeling, while the final section talks about the use of subprograms.
5.1. State Machine Modeling

The state machine is one of the basic components in almost every digital design. As
such, the need will often arise to model state machines in VHDL. This section discusses four
methods for modeling state machines. The unifying example is of the simple state machine
shown in Figure 5-1.

control = '1’

control ='1' control ='1’

S0
outl ='0'
out2 ='0'

control ='0'

control = '0'

Figure 5-1, Example State Diagram

Figure 5-2 contains the package used by all the examples. It abstracts away the input
and output types and provides constants f;or their active states. With this method, it is very
easy to change from, for example, active high to active low logic. Notice that the state type
includes four states but the example state machine only requires three states. This disparity
will be used later on to demonstrate how the four methods handle trap states.

PACKAGE state_machine_package IS
TYPE state_type IS (s0,sl,s2,s3):
SUBTYPE control_type IS BIT;
SUBTYPE output_type IS BIT;

CONSTANT clock_active : control_type;
CONSTANT control active : control_type;
CONSTANT output_active : output_type;

END state_machine_package;

PACKAGE BODY state_machine_package IS

CONSTANT clock_active : control_type := '1°';
CONSTANT control_active : control_type := '1';
CONSTANT output_active : output_type := '1"';

END state machine package;

Figure 5-2, State Machine Package

The entity declaration for the state machine is contained in Figure 5-3 below. The two
generics, output_delay and state_delay, are used in adding delay to signal assignments.
The control port is used to control the state transitions, while the reset port sets the state to s0

when active. The clock controls the transitions, and outl and out2 are the two outputs.

ENTITY state_machine IS
GENERIC (
output_delay : TIME := 1 ns;
state_delay : TIME := 1 ns
)i
PORT (
contrel, reset : IN control_type;
clock : IN control_type;
outl,out2 : OUT output_type
yi .
END state machine;

Figure 5-3, State Machine Entity Declaration

Perhaps the best method for modeling state machines in VHDL is with a CASE
statement on a state signal within a process. A variable, typically called next_state, is
assigned based on the current state and the inputs. The state signal is assigned at the end of
the process. Figure 54 shows an example of a state machine with a CASE statement.

41

ARCHITECTURE best OF state_machine IS
SIGNAL state : state_type;
BEGIN
machine : PROCESS (clock,reset)
VARIABLE next_state : state_type;
BEGIN
IF reset = control active THEN
next_state := s0;
ELSIF clock = clock_active AND clock'EVENT THEN
CASE state IS

WHEN s0 =>
outl <= NOT ocutput_active AFTER output_delay:
out2 <= NOT output_active AFTER output_delay;
IF control = control_ active THEN
next_state := s1;
outl <= output_active AFTER output_delay’
out2 <= NOT output_active AFTER output_delay:;
END IF;

WHEN sl =>
IF control = control_active THEN
next_state := s2;
outl <= NOT ocutput_active AFTER output_delay’
out2 <= output_active AFTER output_delay;
END IF;

WHEN s2 =>
IF control = control_active THEN
next_state := sl;
outl <= output_active AFTER output_delay:
out2 <= NOT output_active AFTER output_delay;
ELSE
next_state := s0;
outl <= NOT output_active AFTER output_delay;
out2 <= NOT output_active AFTER output_delay;
END IF;

WHEN OTHERS =>
next_state := s0;
END CASE:;

state <= next_state AFTER state_delay:;

END IF;
END PROCESS;
END best;

Figure 5-4, CASE Statement Example

The first action of the process is to check for reset. As written, the reset is
asynchronous. It can be made synchronous by making the first IF clause sensitive to the
clock and then checking for reset. If reset is ‘I’, the next state is set to s0, otherwise the normal
state transition checks are performed. An IF clause within each WHEN clause controls
transition to the next state. If a state transition condition is met, the next state is assigned.
Nothing needs to be done if no transition occurs because the cutputs retain the last value

assigned to them. The output values (shown within the circles in Figure 5-1) are also set

within this IF clause. A WHEN clause is included for all valid states. The final WHEN
clause ensures that any invalid states (trap states) cause the next state to be 0. The final
signal assignment assigns the next_state variable to the state signal.

A variation on the CASE method is contained in Figure 5-5. It splits the state machine
into synchronous and asynchronous parts. The synchronous process assigns the next_state
signal to the state signal on a rising clock edge. The asynchronous process takes care of
output and next state assignments. The main difference between Figure 5-4 and Figure 5-5 is
that the output assignments occur asynchronously in Figure 5-5. The functionality is exactly

the same otherwise.

ARCRITECTURE also_good OF state machine IS
SIGNAL state,next_state : state_type;
BEGIN

asynchronous : PROCESS (state,control)
BRGIN
CASE state IS

WHEN sQ =>
outl <= NOT output_active AFTER output_delay;
out2 <= NOT output_active AFTER output_delay:

IF control = control_active THEN
next_state <= sl;
END IF;

WHEN sl =>
outl <= output_active AFTER output_delay;
out2 <= NOT output_active AFTER output_delay;

IF control = control_active THEN
next_state <= s2;
END IF;

WHEN s2 =>
outl <= NOT output active AFTER output_delay;
out2 <= output_active AFTER output_delay;

IF control = control_active THEN
next_state <= sl;

ELSE
next_state <= s0;

END IF;

WHEN OTHERS =>
next_state <= s0;
END CASE;
END PROCESS;

synchronous : PROCESS (clock,reset)

BEGIN

IF reset = control active THEN
state <= s0 AFTER state_delay;

ELSIF clock = control_active AND clock'EVENT THEN
state <= next_state AFTER state_delay;

END IF; -

END PROCESS:;

END also good:

Figure 5-5, CASE Variation

There are many advantages to the CASE method (both variations). First, the CASE
method is very clear. It is not difficult to recognize the correspondence between the VHDL in
Figures 5-4 and 5-5 and the state diagram in Figure 5-1. A second advantage is that it is not
limited to simple state machines. It can handle any number of states (though the CASE
statement becomes unwieldy with too many states) and any number of inputs and outputs.
The later methods do not share this advantage. Also, with the CASE method it is very easy to

4

add either synchronous or asynchronous reset capability and trap state handling. Finr.1y,
the CASE method is directly synthesizeable by VHDL synthesis tools such as the Synopsys
Design Compiler® [Syn90).

A second method for modeling state machines was presented by Armstrong in his
book [Arm87]. It uses nested BLOCKSs and guarded signal assignments. Figure 5-6 contains
an example. The state signa!l is declared as a REGISTER. Registered signals retain the last
value assigned to them when all their drivers have been disconnected (through BLOCK
guards evaluating to False)!?. The outer BLOCK is guarded on the rising edge of the clock,
while all inner BLOCKSs are guarded by the Boolean AND of the outer guard and their
respective states. The outputs are assigned based on the value of the state signal.

17 Por more information, see Chapter 5 of YHDL ; Hardware Description and Design.

4%

ARCHITECTURE block_state machine OF state_machine IS
TYPR state_array_type IS ARRAY (NATURAL RANGE <>) OF state_type;

FUNCTION state_resolver (state_ array : IN state_array_type)
RETURN state_ type IS

VARIABLE resolved_value : state_type;

BEGIN

FOR i IN state_array'RANGE LOOP

resolved value := state array(i);

END LOOP;

RETURN resolved value;
END;

SIGNAL state_register : state_resolver state type REGISTER;
BEGIN

synchronous : BLOCK (clock = clock_active AND clock'EVENT)
BEGIN

state0 : BLOCK (((state_register = s0) AND guard)
OR (reset = control_active))
BEGIN
state_register <= guarded sl AFTER state_delay
WHEN control = control_active ELSE s0;
END BLOCK state0:

statel : BLOCK ((state_register = sl) AND guard)
BEGIN
state_register <= guarded s2 AFTER state delay
WHEN control = control_active ELSE sl;
END BLOCK statel;

state2 : BLOCK ((state_register = s2) AND guard)
BEGIN

state_register <= guarded sl AFTER state_delay

WHEN control = control_active ELSE s0 AFTER state_delay;
END BLOCK state2;

outl <= output_active AFTER output_delay
WHEN state register = sl ELSE NOT output_active;

out2 <= output_active AFTER output_delay
WHEN state_register = s2 ELSE NOT output_active;

END BLOCK synchronous;
END block_state_machine;

Figure 5-6, Nested Block Example

The advantages of this method are that, once again, the correspondence between the
VHDL and the state diagram is good. Adding a synchronous reset is also simple. The
disadvantages of this method are that a BLOCK must be written for each possible state and
each output must have its own selected or conditional assignment. Thus, this method
becomes unwieldy for even medium size state machines. One final disadvantage is that the
author was unable to get it to work. In sum, this method should be avoided.

One final method for implementing state machines is through a conditional signal
assignment statement. Figure 5-7 contains an example. The state transitions and output
assignments are placed within WHEN clauses. Trap states are handled by the final WHEN
clause, Sate assignment is done inside a synchronous PROCESS.

ARCHITECTURE ugly OF state_machine IS
SIGNAL state,next state : state_type;
BEGIN
next_state <= s0 WHEN ((reset = control_active) OR
((control = NOT control_active)
AND (state = s2))) ELSE
sl WHEN (((state = s0) OR (state = s2))
AND (control = control_active)) ELSE
82 WHEN ((state = sl)
AND (control = control_active)) ELSE
s0;

outl <= output_active AFTER output_delay
WHEN state = sl ELSE NOT output_active;

out2 <= output_active AFTER output_delay
WHEN state = s2 ELSE NOT output_active;

synchronous : PROCESS (clock)
BEGIN
IF clock = control_active AND clock'EVENT THEN
state <= next_state AFTER state_delay;
END IF:
END PROCESS;

END uqgly:;

Figure 5-7, Conditional Signal Assignment Example

The conditional signal assignment method suffers from a lack of clarity. By
duality, Figure 5-7 could be replaced with an equivalent PROCESS closely resembling that of
the CASE method in Figure 54. Thus, in general this method should be avoided and the
CASE method used instead.

5.2. Synchronous designs

When constructing abstract behavioral models, it is critical that fundamental
assumptions about the underlying hardware not be violated. One such assumption is
synchronicity. Just because the model is abstract doesn’t mean that this basic notion of

4

v

digital hardware can be violated. Thus, it is good practice to make all processes sensitive to a

clock edgel® unless that process is modeling a section of combinational logic.

A side effect of constructing synchronous models is that reasonably accurate
performance estimates can be obtained very early in the design process. The performance
information is derived from the number of clock cycles the model requires to perform its
functions. The information is accurate only if reasonable assumptions about underlying
hardware operations are made. For example, it is unreasonable to assume that an integer
multiply will be completed within 40 ns, but it is reasonable to assume that a memory read
will require two clock cycles. This knowledge can be built into the model via a state machine
which asserts an address and then waits one clock cycle, for example. Such performance

estimates can then be used to assist in the specification of related components.

5.3. Timing

Realistic timing does not belong in an abstract model since such information cannot
be extracted from the design at this stage. However, dummy delays are useful for making
signal transitions more visible. Without them, all transitions occur one delta delay after an
assignment, thereby making waveform displays more difficult to read. Readability is thus
enhanced by adding a delay to all signal assignments. Such a delay can be an integral

division of the clock period, for example.

5.4. Compilation Dependencies

VHDL’s compilation dependencies, illustrated in Figure 5-8, can be used to the
designer’s advantage. Modifications made to higher level design units require
recompilation of all lower level design units which reference it. VHDL allows separate
compilation of package headers and bodies. Modifications made to the package body only
require that the body be recompiled. Modification of the package header requires that all
design units referencing that package be recompiled. Thus, it is good practice to separate the
package body and header. The one exception is that modifying types or subtypes will always
cause the package header to need recompilation gince these declai ations cannot be deferred
to the package body.

18 of course, if asynchronous hardware is being modeled this should not be done.

48

[

Package

Header

Package Body L
Entity

]

Architecture

!

Configuration

Figure 5-8, Compilation Dependencies [VHDLS0]

The organization of packages can drastically affect recompilation. For example, if
one package is used to define all types, constants, and subprograms, then nearly every
design unit will have to reference the package. It is better to organize packages by function,
i.e. place related constants, types, and subprograms together in the same package. This way,
only a few design units will reference each package, thereby reducing recompilation if the

package headers need to be modified.
5.5. Resolution functions

Resolution functions can be very useful in abstract behavioral modeling. However,
their use is fundamentally limited by their physical interpretation of resolving the value of
signals with more than one driver. In the case of the logic resolution function included with
all VHDL simulators, this interpretation is intuitive since all digital designers know that,
for example, a high-impedance, or ‘Z’, and a ‘1’ result in a ‘1’, and a ‘1’ and a ‘0’ result in an
unknown c¢. ndition, or X'. What if, however, a record type signal requires multiple drivers?
A resolution function can be written for a record type, since any type may be resolved. This
can be done by adding a Boolean field to the record called “high_z" (or similar). The
resolution function can then be written to ignore all drivers whose high_z field equals True.
Similarly, a high_z value can be added to enumerated types and resolution functions written
to ignore all such values. The only problem is deciding what value to assign when more than
one non-high_z driver exists (this is usually an error which could be flagged by an ASSERT
statement).

The multiple driver problem usually arises in abstract behavioral modeling of data
buses. An example should make things clearer. When constructing a model for a memory,
it is natural to make the data port of mode inout. If this is done, then the port type must be
resolved since both the memory and whatever is trying to write to the memory will be driving
the port. If the memory stores abstract data such as records or enumerated types, a resolution
function must be written in accordance with the guidelines mentioned in the previous
paragraph. Another, somewhat simpler solution is to add explicit input and output ports to the

memory. No resolution function is required, but the model is less clean.

But what about tne address input to the memory ? Oftentimes, more than one signal
will need to assert an address. Should a port be added for every such signal? To avoid port
proliferation in this case, a resolution function should be written. This solution makes sense
since, in general, all addresses in a given model will be of the same base type (i.e. integer).
A high-impedance address can be chosen (such as -1 or integer'right) and the resolution
function designed to ignore all drivers of that value. An example of such a function is given
in section 7.2.1.2.

5.6. Subprograms

Subprograms are a very useful abstraction mechanism in behavioral modeling.
They can be used to perform complex functions for which a hardware method does not yet
exist. For example, in the initial scoreboard model, voting is done via multiple procedures
and functions. Constructing the voter in this manner allowed the modeling to proceed
quicker. Furthermore, if the subprograms are placed in a package, modifying them will
require a smaller recompilation penalty than modifying architectures.

6. Scoreboard Functional Description

This chapter contains the complete functional description for the scoreboard. The
first section covers the SERP and CT formats. The second section discusses the overall
design goal, which is to optimize the common case. The third section discusses in depth the
two major SERP processing phases. The final two sections cover fault conditions and the
other functions the scoreboard must perform.

6.1. SERP Format

Each SERP entry has the form given in Figure 6-1. Each field is 8 bits wide, making
each entry 32 bits in length.

E 2 don't cares Exchange Class

Destination VID user byte

Figure 6-1, SERP Entry

The first byte contains the OBNE and IBNF bits for that PE. The rest of the bits are
unused. The second byte contains the exchange class. A breakout of the bits in this field can
be found in section 6.3.3.2. The third byte contains the destination VID for the message (if
any), while the fourth byte is user defined. The exchange class, destination VID, and user
byte are considered invalid by the scoreboard unless the OBNE bit is set.

6.2. CTFormat

The form for a CT entry is shown in Figure 6-2. Each field is eight bits wide and the
entire entry congsumes 8 bytes.

51

CT Entry

VID number

redundancy
level

presence bits

timeout value

7 5 4 0
PID0 [————=| NEnumber | PE number]
PID 1
PID 2
PID 3

Figure 6-2, Configuration Table Entry

The first entry is the VID number, which can take on any value between 0 and 25519
The second field contains the redundancy level. The redundancy level can be either zero
(for a non-active VID), one, three, or four. The third entry contains the presence bits. The
form for the presence bits is shown in Figure 6-3. A presence bit is set when the VID has a
member on the corresponding NE. The fourth entry is the value to use when calculating
timeouts on the VID (how this entry is used is explained in section 6.3.1.4). The next one to
four bytes contain the PIDs of all the VID members. The form of the PID is shown to the right
of Figure 6-2. It is a simple encoding of an (NE,PE} pair — three bits for the NE and five for
the PE. This allows a theoretical maximum of 8 NEs with 32 PEs each, more than enough for

any realistic configuration,

x x x NE4 NE 3 NE2 NE1 NEO

Figure 6-3, Format of the Presence Rits

19 Currently, the entire CT is composed of 256 entries (one for each possible VID). This could easily be
reduced to save memory.

An example CT entry for a triplex is shown in Figure 6-4. The redundancy level
field is Binary”011”, or three, and the presence bits reflect the fact that the VID has members
on NE's zero, two, and four. The fourth entry is the timeout value, while the last three entries
are the PIDs of the members.

CT Entry
Redundancy Level VID #
0 1 1 ~4——{ redun

presence
17
NEO,PE4| member 0
NE2,PE0| member1
NE4,PE6 | member 2
null

Presence Bits

Figure 6-4, Example Configuration Table Entry

The entire CT, composed of 2566 CT entries, is stored as a single block in memory.
The entry for a given VID can be retrieved by multiplying the VID number by eight (or
shifting it three places to the left) and using offsets 0 -7 to retrieve specific fields.

6.3. Goal: Optimize The Common Case

With most digital hardware, speed is of the essence. The scoreboard is no exception.
In this case, speed can mean the difference between a viable real-time fault-tolerant parallel
processor and a nifty laboratory prototype. This is because message passing latency is
critical to real-time systems such as the FTPP. The scoreboard has a dominant affect on the
latency of inter-processor messages on the FTPP,

The scoreboard SERP processing latency is the time span between the NE’s global
controller signalling the scoreboard to begin processing a new SERP and detection of the
first ready message in the current SERP (assuming a valid message exists within that
SERP). This latency limits the iteration rate of periodic tasks on the FTPP.

The scoreboard is designed to optimize SERP processing as much as possible. The two
most common actions in SERP processing are voting and checking timeouts. Voting is a

common operation since all information in the SERP must be voted before it can be used by

the scoreboard. However, the commonality of checking timeouts is not so obvious.

Consider a triplex which desires to send a message. Because the PE's composing the
triplex are only loosely synchronized, one of them will be slightly behind the other two (but
still within a bounded skew, as per the synchronization requirement of Byzantine
Resilience). The lagging PE will set its OBNE bit after the other two. It is probable that, since
a SERP cycle is shorter than the maximum skew, the scoreboard will see two asserted OBNE
bits and one unasserted one. Though the lagging PE is not faulty, a timeout will have to be set
because unanimity does not exist. If the PE responds before the timeout expires, the PE
remains non-faulty and synchronized with the remaining PEs. If the timeout expires, the

faulty PE is ignored. IBNF timeouts are handled in a similar fashion.

6.4. SERP Processing

In processing the SERP, the scoreboard passes through two phases. First each VID's
SERP entries are voted and written into an intermediate storage called the voted SERP
memory. Then the voted SERP is scanned for valid messages. This is the parallelization of
a sequential algorithm presented in the next paragraph.

A sequential algorithm for processing the SERP is shown in Figure 6-5 {Mor91). The
algorithm assumes the existence of a look-up table which translates a VID number to its
corresponding PIDs within the SERP. This table can be generated from the CT. The
algorithm begins by reading the OBNE bits of the first VID and voting them. If the result is
unanimous (or majority plus timeout), it votes the destination VID field20, pulls its entries
out of the SERP, and votes their IBNF bits. If the IBNF result is unanimous (or majority plus

timeout), the exchange class and user bytes are voted and the message sent.

20 For the sake of brevity, I'l ignore the special case of broadcasts. The algorithm is essentially the
same without them.

vots destination
VID Seld

vote IBNF bita of
destination,

chack timeouts
if Decessary

vote user
Mdm

| send meesage

Figure 6-5, Sequential Scoreboard Algorithm

This algorithm, while ideal for a computer program, has problems when translated to
hardware. The first problem is voter utilization. In the algorithm as presented, a hardware
voter would be idle while timeouts were being checked. It makes sense to pipeline the voting

such that the OBNE and IBNF bits are voted first and the other SERP fields are voted while
timeouts are being checked.

The existing scoreboard algorithm reflects the pipelining idea. It uses on-board look-
up tables extensively for efficient indirection. The penalty, besides additional memory, is
longer reset and CT update times since the look-up tables must be regenerated after these
operations. The remainder of this chapter functionally describes the scoreboard. Chapter 7

discusses the execution of these functions in greater detail. A flowchart representation of the
entire algorithm can be found in Appendix 10.1.

6.4.1. Voting

Because of the special nature of the scoreboard, it cannot use a generic, four way, bit
for bit majority voter. This is unfortunate since many such designs already exist. The

scoreboard voter varies from conventional designs in the following ways:

® The voter has different rules for determining the majority result based on the
redundancy level of the input and the data being voted.

@ The voter is not masked in the normal sense.

® Syndrome generation changes based on the redundancy level of the input and on

the location of the VID’s members.
6.4.1.1. Mpjjority Rules

The scoreboard uses the following rules for determining if a majority of the inputs

agree .
Redundancy Level Type of Data Majority
simplex OBNE lofl
simplex IBNF Oof 1
simplex data bit lofl
triplex OBNE 20f3
triplex IBNF 20f3
triplex da_tgb_it 20f3
quad OBNE 3of4
quad IBNF Jof4
quad data bit 2 off

ﬂ3oi'-tisnl-onvalidumgiorityforaqmld.

The first column specifies the redundancy level of the input. The second column
specifies the type of data being voted, whether OBNE, IBNF, or data. Data includes the
destination VID, exchange class, and user byte. The final column indicates the number of
inputs which must be asserted, or ‘1’, for the majority condition to exist. Two cases are of
special note. The first is the case of voting the IBNF bit of a simplex. The 0 of 1 majority
condition specifies that a timeout should be set on a simplex whenever its IBNF bit is not set.
This prevents a faulty simplex from holding up VIDs trying to send it messages. The second

notable case is that of voting quads. For the OBNE and IBNF bits, an unambiguous majority
is required (3 of 4), while data requires only 2 of 4 to agree. This ensures that if a two-two split
occurs (two members say one thing, two another) when voting either the OBNE or IBNF bits
the “safe” option is taken. It is better to not send a message or risk overwriting a PE’s input
buffers until a clear manifestation of faulty conduct is seen. Since there is no clear “safe”
option for data, either 2 of 4 or 3 of 4 may be used.

6.4.1.2. Masking

The scoreboard’s voter is not maskable in the normal sense of “masking out” some
input bits to prevent them from contributing to the voted result. Instead, inputs are masked
automatically based on the redundancy level. Conceptually, the voting logic contains four
pipeline registers, numbered 0 to 3, which feed the voter (reference “gure 6-6). When voting
a simplex, the value to vote will always reside in register 0. When voting a triplex, the values
will always reside in registers 0 to 2. Values for a quad will occupy all four registers. Inputs
are voted based on the redundancy level and the data type as described in section 6.4.1.1.
Because of this arrangement, no inputs need to be masked out. Figure 6-6 shows the

conceptual representation of the scoreboard voter.

=[]~

| .

—
F n.._..mm] Fundnnq Yevel

Figure 6-6, Conceptual View of the Voter

An implication of this is that, for example, a triplex always has three values to vote,
even if one of those values originates from a faulty PE. In general, the data from a known
faulty PE would be masked out to prevent it from contributing to the voted result. However, if
reintegration of the faulty PE is desired, it must be allowed to participate in the voting so that
it can be checked for continued faulty conduct. If it was masked out, there would be no way to
check if the fault was transient or permanent. The disadvantage of this method is that, for
permanently faulty PEs, the full timeout period must be paid each time a message is sent or is
received by the VID until a CT update can be performed (see section 6.6 for a further
explanation of CT updates).

6.4.1.3. Syndromes

The scoreboard voter must produce three different syndromes — OBNE, IBNF, and
data syndromes. The syndromes are in CT-absolute format (see Figure 6-7), which means
that each bit corresponds to a PID in the VID’s CT entry, with the least significant bit
corresponding to the first member in the VID’s CT entry. A bit is set in the OBNE and IBNF

&8

syndromes when a member of the VID times out. Bits corresponding to non-existing
members are guaranteed to be ‘0’. For example, if the OBNE bits for the triplex presented in

section 6.1 are :

member 1 : set
member 2 : not set
member 3 : set,

then the voted result is OBNE set and the OBNE syndrome will be as shown in Figure 6-8.
The syndrome bit for member 2, which is the second least significant bit, is set. The
syndrome bits for members 1 and 3 are unset. The other syndrome bit, which corresponds to

the non-existent fourth member, is a ‘0’.

member 4 | member 3 | member 2 | member 1

Figure 6-7, Syndrome Format

0 0 1 0

Figure 6-8, Example OBNE syndrome

The third syndrome produced by the scoreboard, the data syndrome, is generated
differently then the other two syndromes. It is generated by OR’ing the syndromes from the
destination VID, exchange class, and user byte. A set bit in this syndrome indicates non-
agreement in one or more bits in one or more of those fields. As with the other two syndromes,

bits corresponding to non-existent PEs are ‘0’
6.4.14. Timeout Procedure

A timeout is set on a VID when a majority, but not a unanimity, of its members set
their OBNE/IBNF bits. It is important to realize that majority conditions on these two SERP
fields are the only conditions under which timeouts are set. The destination VID, exchange

class, and user byte fields have no affect on timeouts.

The timeout algorithm is as follows (for the remainder of the paragraph, IBNF can be
substituted for OBNE with no change in meaning). When a majority condition is seen on the
OBNE bits, the scoreboard checks to see if a timeout has already been set on the VID. If no

timeout is in progress, the current value of an internal free-running timer is read and

5

placed in a timeout storage area. If a timeout has been set, the stored value is subtracted from
the current value of the timer. If the difference is less than or equal to the value stored in the
VID’s timeout field in the CT then the timeout has not yet expired, in which case the
scoreboard clears the OBNE bit in the voted SERP memory (because the message cannot be
sent yet). If the result is greater than the VID’s timeout field, then the timeout has expired and
the scoreboard does nothing to the voted OBNE bit. At this point, the VID can send the message
if the other conditions are met (see the following sections for the explicit rules on valid

messages).

The one exception occurs when the timeout field in the CT is zero. If this is the case,
the VID will never time out. This case is useful for debugging purposes and in a situation

where a VID should never time out.

Notice that IBNF timeouts are set on a VID regardless of whether another VID is
waiting to send a message to that VID. This prevents the input buffers of an FMG from being
overwritten. No messages will be sent to an FMG until a unanimity or a majority+timeout of
its members assert their IBNF bits.

6.4.2. Finding Messages

Once the scoreboard has finished voting the SERP and checking timeouts, it searches

the voted SERP for valid messages. The following sections cover message related functions.

6.4.2.1. Valid Exchange Classes
The exchange class byte of the SERP contains three sub-fields: the class, packet type,

and mode. Figure 6-9 below shows their locations,

7 6 5 4 3 2 1 0

‘m packet type exchange class

Figure 6-9, Exchange Class Byte Fiekis

The class defines the protocol to be used when exchanging the packet. Currently, the

following values are valid (for an in-depth explanation of exchange classes see {Sak91]):
0O-class 0 (no data)

1-class 1 (one round exchange)

2-class 2 (source congruency) from member on network element A
3-class 2 (source congruency) from member on network element B
4-class 2 (source congruency) from member on network element C
5-class 2 (source congruency) from member on network element D
6-class 2 (source congruency) from member on network element E

The packet type defines what the data in the packet represents. Data packets are the
normal mode of communication between virtual groups. Dats packets are treated as a
contiguous stream of 64 bytes. There is no structure enforced by the NE on data packets. The
other packet types, however, have specific formats that must be adhered to. The following are
the current valid packet types:

0-data

1-configuration table update
2-isync

3-voted reset

The mode determines how the packet is to be distributed. Currently, the only modes
supported are normal (bit 7 is cleared) and broadecast (bit 7 is set). In the normal mode, the
packet is sent to the virtual group specified in the destination VID field. In broadcast mode,
all active virtual groups will receive a copy of the acket (including the sender) and the
destination VID field is ignored.

6.4.2.2. Invalid Messages

The following is a list of all the conditions under which an otherwise valid message
can be declared invalid. In all cases, the message is “sent”, bat the destination is changed to
the null destination (a PID of 0x1F). This PID value tells the NE to flush the packet after it
has been received and not deliver it to any PE. The four cases boil down to two different
conditions: invalid destination VID and/or invalid exchange class. A fourth, two-bit
syndrome is generated by the scoreboard to represent the result of these two conditions.

61

* If the Higher Life Form (HLF) bit21 is set, simplexes are not allowed to send CT
update, broadcast, or voted reset packets.

¢ Ifthe HLF bit is set, all CT update and voted reset packets must be exchanged

using a class 1 exchange.
o If the exchange class is class 1 the source VID must be a FMG.

e The destination VID field must correspond to a valid VID22,

6.4.2.3. Searching for Valid Messages

When the voting and timeout process is complete, the scoreboard scans the voted

SERP for valid messages. The Boolean equation for a valid message is :

valid_message = source_VID(OBNE) AND destination_VID(IBNF)
AND message_info_valid;
OBNE = unanimous OR (majority AND timeout-expired)
IBNF = unanimous OR (majority AND timeout-expired)

A valid message exists when the sender either has a unanimous OBNE or a majority plus
timeout-expired, the destination has either a unanimous IBNF or a majority plus timeout-
expired, and all message information is valid. Once the condition is met but before the

message is sent, the scoreboard clears the destination’s IBNF bit since the act of sending a
message to the VID may render it invalid. Thus, a given VID can send a maximum of one

message and receive a maximum of one message per SERP cycle.

When a valid message is found, the scoreboard provides the NE with the following

information:

21 The HLF bit exists to prevent, in a fielded FTPP, a simplex from doing things it is not normally
allowed to do. In the laboratory, though, allowing simplexes to do such things is useful for
debugging.

This condition must be flagged internally to prevent scoreboards residing on different NEs from
reaching different results. For example, if the IBNF bit of the voted SERP memory location
corresponding to the non-existent VID was ‘1’ in one scoreboard but ‘0’ in another (this could happen
since that particular memory location is never written to by the scoreboard), they would reach
different conclusions, thereby introducing a fault which would probably bring the system down.

@

1. OBNE,IBNF,and data syndromes

2. invalid data syndrome (explained in section 6.4.2.2)
3. Presence bits (used by the NE as a vote mask)

4. NE mask

5. the exchange class

6.t~ =+ the local NE where the message can be found
7. the PID on the local NE where the message is to be sent
8. A timestamp

Items 6 and 7 are determined from the source and destination VID’s respective CT entries
and by the local NE number. Using the triplex example from sections 6.1 and 6.3.1.3, if the
triplex has a valid message to send to itself, then the scoreboards in the system would provide

the following source and destination PIDs to their respective NEs :

Scoreboard’s NE number Source and Destination PIDs

NEO,PE4

0x3F

NE2,PE0

0x7F

BalWwiN=]O

NE4,PE6

When an NE does not have a VID member located on it, the scoreboard passes it a null PID of
0x1F (all 1's) so that the NE will participate in the exchange but will not deliver the message

to any processor.

6.4.2.4. Message Sending Protocol

After a valid message condition exists and the scoreboard has gathered all the
information necessary to send the message, it writes the data into a special area of memory
and signals the NE to send the message. The scoreboard then continues to search for valid
messages. If another message is found before the NE is finished sending the previous
message, the scoreboard waits until the NE is finished. It then enqueues the new message
and once again looks for more valid messages. When the entire voted SERP has been
scanned, the scoreboard signals the NE that it is finished processing the SERP.

6.4.2.5. Broadcasts

Broadcasts are a special form of message which cause the scoreboard to process the
voted SERP differently. As soon as a valid broadcast message is encountered (exchange
class = broadcast AND voted OBNE bit set), the scoreboard ceases to search for any more
messages until the broadcast is sent. It first cycles through the entire voted SERP to check if
all the IBNF bits are set. If they are (which is unlikely), then the message is sent
immediately. Otherwise, the scoreboard votes SERPs until all IBNF bits are set, after which
the broadcast is sent. Once a broadcast is noted, no other packets are exchanged until the

broadcast is exchanged.

The broadcast is very useful for bringing the entire system into synchronization
because no other messages can be exchanged until the broadcast is sent. As a result, the

sender is assured that all PEs in the system receive the broadcast at the same time.
6426 Priority

The scoreboard has two different methods for determining message priority — VID-
ordered and round-robin. A VID based system assigns priority to the lowest VID number.
This is done by always beginning the scan for valid messages at the start of the voted SERP
memory. The round-robin system attempts to distribute priority so that no VID is favored
over any other. On each SERP cycle, the scoreboara begins looking for valid messages one
voted SERP entry later than in the previous cycle. This system ensures, for instance, that a
babbling simplex cannot effectively shut out a VID by constantly sending messages to it.

6.5. Faulty Conditions

The scoreboard does not perform any fault diagnosis itself. It simply notes an
anomaly and sets the appropriate syndrome bits. In the case of an invalid destination VID or
an invalid exchange class, the scoreboard sets the corresponding invalid data syndrome bit.

The following conditions indicate a fault has occurred:
¢ A VID times-out from either OBNE or IBNF, or both.

* The OBNE bit for a VID is unanimous, but one member doesn’t agree on the

destination, exchange class, or user byte (or any combination thereof).

* The destination VID does not correspond to a valid VID in the system.

¢ The exchange class field has an invalid value.

6.6. Other Operations

The scoreboard also performs the following initialization operations:

Synchronize Timer - the synchronize timer operation is used to bring the timers
inside each scoreboard into synchronization. This ensures that all timestamps

are congruent. This operation also causes the scoreboard to delete all pending

timeouts.

CT Update - A CT update causes three actions to occur. First, it forces the scoreboard to
regenerate all internal tables (explained in section 7.1) which are used to index
SERP entries during SERP processing. Second, it deletes all timeouts, since a
VID with a pending timeout may no longer exist after the update. Finally, a CT
update causes the voted SERP processing section of the scoreboard to reset its
internal priority pointer to the first voted SERP entry (if VID-ordered priority is

implemented).

Reset - A scoreboard reset is performed when the NE is first powered-up and
whenever the NE itself is reset. This operation performs a CT update and

initializes the timer to zero.

7. Scoreboard Behavioral Model

This chapter describes in detail the operation of the behavioral level model of the
scoreboard. The first section discusses the overall design of the model by explaining
important sections of the code, beginning with the packages and ending with the entities. The

functional description of the model is presented by describing each major operation.

7.1. Overall Design

The scoreboard behavioral model represents the third step, behavioral models of the
high-level partitions, in the design process presented in section 5.1. Chapter 6 contains the
first step, system specification. The second step, high-level partitioning, is presented in the
fol! .wing paragraph.

Figure 7-1 below shows the high-level partitioning of the scoreboard. The partitioning
is based on the algorithm discussed in section 6.4. The Voting and Timeout Hardware uses
the Lookup Table to cycle through the SERP, reading a VID’s SERP entry each cycle, feeding
them to the voter and checking timeouts. The voted result is written into the Voted SERP
memory. When voting is complete, the Sender, using the VIDS-in-system table, cycles
through the Voted SERP memory looking for valid messages. When a valid message is
found, the message information is written into the Message Info RAM and the NE is told to
send the message. The structure of the tables and how they are generated will be presented in

later sections.

essa;

Info

RAM

Looku Central DS_in Sender
Table Controller table
Address .
Control Address Data

Voting and Voted

E(}:lg & T t SERP
Hardware memory

Figure 7-1, High-level Partitions of the Scoreboard

Once the partitioning had been accomplished, the VHDL models for each partition

were written. The remainder of this chapter covers these models.

7.2. Explanation of Important Sections of Code

The following sections discuss the major sections of the behavioral VHDL model. The
packages are covered first since they abstract away much of the detail and are critical for

understanding the model. The function and interface of each entity is then described.

7.2.1. Packages

The behavioral model relies heavily on packages to allow multiple entities to share
types, constants, and subprograms. The packages are organized by purpose and are usually

associated with only a few entities.
7.2.1.1. Scoreboard package

The scoreboard_package is the global package and thus contains items common to
the entire design. These items include the SERP, CT, and message item data types,

configuration information, and two conversion functions.

The package begins with the following declarations which serve to abstract away the
configuration of the FTPP :

CONSTANT num _ne : INTEGER := 5;
CONSTANT pe per_ne : INTEGER := 8;
CONSTANT max_vid : INTEGER := 255;
CONSTANT max_redun_level : INTEGER := 4:

Because of these definitions, the overall configuration of the FTPP can be changed very
easily. An additional set of constants is used to define the locations in the dual-port RAM of
the SERP, CT, and message queue.

CONSTANT dpram_size : INTEGER := 300;

CONSTANT mem_base : address_type := -1;

CONSTANT serp_base : address_type := 0;

CONSTANT ct_base : address_type := dpram_size + 1;
CORSTANT msg_base : address_type := 2*dpram size + 1;

The “meat” of the package is the type declarations. The initial declarations abstract
away the types of the sub-fields of the SERP to aid visibility in the simulator.
Flow_control_type is used to represent the OBNE and IBNF bits. Vid_type holds the
destination VID number. Broadcast_type, packet_type, and ex_class_type represent the three
fields within the exchange class SERP entry. Class_type represents the exchange class field
of the SERP. Note the resemblance between its three fields and Figure 6-9.

SUBTYPE flow_control_type IS BOOLEAN;

SUBTYPE vid_type IS INTEGER RANGE 0 TO max_vid;
SUBTYPE broadcast_type IS BOOLEAN; -
SUBTYPE packet_type IS INTEGER RANGE 0 TO 3;
SUBTYPE ex_class_type IS INTEGER RANGE 0 TO 7;

TYPE class_type IS RECORD
broadcast : BOOLEAN;
packet : packet_type;
ex_class : ex_class_type;

END RECORD;

The second set of types is used to define CT entry fields. The redundancy level of a VID is
represented by an enumerated type. A zero redundancy level indicates an inactive VID.
Presence_type contains the presence bits field of a CT entry, while timeout_type contains the

timeout field. Members_type holds the addresses of a VID’s SERP entries.
TYPE redun_ level_type IS (zero,simplex,triplex,quad);
TYPE presence_type IS ARRAY (0 TO (num ne - 1)) OF BOOLEAN;

SUBTYPE timeout_type IS INTEGER RANGE 0 TO 255;
TYPE members type IS ARRAY (0 TO (max_redun level ~ 1)) OF pe loc_type:;

The last three types are used to represent an entry in the SERP, CT, or message queue.

They are all records to facilitate encapsulation and clarity. Notice t} ¢ direct correspondence

between serp_type and Figure 6-1 and between ct_type and Figure 6-2. Msg_type contains all

the information necessary to send a message.

TYPE serp_type IS RECORD
obne,ibnf : flow_control_type:
dest_vid : vid type;
class : class_type:

END RECORD;

TYPE ct_type IS RECORD
vid_number : vid_type;
redun_level : redun_level_ type;
presence : presence_type’
members : members_type;
timeout : timeout_type;

END RECORD;

TYPE msg_type IS RECORD
source_vid,dest_vid : vid_type:
class : class_type;
timestamp : TIME;
obne_syndrome, ibnf syndrome,vote_syndrome : presence_type’
size : NATURAL;

END RECORD;

The final constant declarations are used to assign default values to the previously
defined composite types. This is syntactically necessary if a port of mode in needs to remain
open.

CONSTANT def class : class_type := (FALSE,0,0):

CONSTANT def presence: presence_type := (FALSE,FALSE,FALSE,FALSE,FALSE):

CONSTANT def members : members_type := (0,0,0,0);

CONSTANT def serp : serp type := (FALSE,FALSE,0,def_class);

CONSTANT def ct : ct_type := (0,zero,def_presence,def_members,0);

CONSTANT def msg : msg_type := (0,0,def class,0 ns,def presence,
def_presence,def presence,0);

7.2.1.2. Address Package

The address_package contains the items necessary to implement a resolved address
type for use in memory addressing. The scoreboard model contains many small memories,
some of which need to be addressed by more than one entity. This creates a need for a
common resolved type for use in addressing. A lsgic type could not be used since this would
make the behavioral model less clear. It was desired to use a subtype of integer for

addressing yet retain the ability to have multiple drivers. Address_package is the result.

The key to resolving an integer type is to define a high impedance value and write a
resolution function which ignores all drivers with this value, just like a logic resolution
function ignores drivers with high-impedance values. If an address has more than one

driver with non-high-impedance values, then the resolution function should return a high-

impedance address. Address_type is defined as ranging from -1 to integer'right and the
high_z_address is defined as -1. An array of addresses is also declared for use as input to the

resolution function.

SUBTYPE address_type IS INTEGER RANGE -1 TO INTEGER'RIGHT;

CONSTANT high_z_address : address_type :~ -1;
TYPE address_array IS ARRAY (NATURAL RANGE <>) OF address_type:’

The resolution function takes an array of addresses as input and returns the one

non-high_z_address value. If more than one driver is not equal to -1, an error condition is
asserted. Finally, the resolved address type is declared.

FUNCTION resolve_address (addresses: IN address_array)
RETURN address_type IS

VARIABLE result : address_type;
VARIABLE temp_i : INTEGER:
VARIABLE found_one,more_than_one : BOOLEAN := FALSE;

BEGIN
result := high_z_ address;

-- If no inputs then default to high_z_address
IF (addresses'LENGTH = 0) THEN
RETURN result;
ELSIF (addresses'LENGTH = 1) THEN
RETURN addresses (addresses'LOW) :
-- Calculate value based on inputs
RELSE

-- Iterate through all inputs
FOR i IN addresses'RANGE LOOP
IF (addresses (i) = high z address) THEN
NEXT; T
ELSIF NOT found one THEN
result := addresses(i);
found one := TRUE;
ELSE
more_than_one := TRUE;
END IF;
END LOOP:;
IF more_than_one THEN
result := high z address;
ASSERT FALSE
REPORT "Address line has more than one driver"
SEVERITY ERROR;
END IF;

-- Return the resultant value
RETURN result;
END 1IF;
END;

SUBTYPE resolved address IS resolve_address address_type:

71

7.2.1.3. Voter Package

The voter package contains subprograms for converting the types used in the SERP to
and from bits and bit_vectors and subprograms for performing rudimentary voting It is
important to note that this initial model does not perform majority voting; instead, it merely
chooses the last parameter passed to it. This is not a major flaw since the current test vector
generator does not generate faults. Instead, all SERP entries within a VID are the same. A

structural voter currently being designed performs bitwise majority voting.

This package also defines types for use in the internal timer. The constant
timer_resolution specifies the number of bits of resolution in the internal timer. Subtype
timer_range is used to constrain the possible values of the timer. Init_timer_value is the
value the timer assumes immediately after rollover, while max_timer_value is the rollover
value. Timer_type represents a single entry in the internal timeout memory. Each entry has
a flag to signal whether a timeout has been set and a variable to hold the value of the timeout.

The declarations are given below.

CONSTANT timer_resolution : INTEGER := 16;

SUBTYPE timer range IS INTEGER RANGE 0 TO (2**timer resolution - 1);
CONSTANT init timer value : timer range; -

CONSTANT max_timer_value : timer_range:;

TYPE timer_type IS RECORD
timeout_set : POOLEAN;
value : timer_range;

END RECORD;

TYPE timeout memory type IS ARRAY (INTEGER RANGE <>) OF timer_type;
7.2.14. Other Packages

The behavioral model contains five more packages. The testbench package contains
functions to read and write test vector files generated by a C program (see section 7.5.1 for
further details). The file format is simple and can be gleaned from the C source code in
Appendix 10.8.

The main control package contains two important enumerated type declarations.
The first one, shown below, is used by the testbench to control the scoreboard. The unknown
operation is included as an error check. A concurrent assertion statement warns the user if

an unknown state is ever reached. The other operations will be explained in section 7.3.

TYPE operation_type IS (unknown,idle, reset_state,update_ct,
clear_timeouts,process_new_serp,continue);

The second declaration is used by the scoreboard to inform the testbench what operation it is

performing and when it has completed a given operation.

TYPE return_operation type IS (unknown,idle,busy,reset_ complete,
ct_update_complete,clear_complete,
message_to_send, processing_complete) ;

The voted SERP package encapsulates types used by the entities which deal with the
voted SERP memory. Each voted SERP entry is a record with the fields shown. The
vid_is_simplex flag is used to flag illegal simplex messages since the redundancy level is
not included in a voted SERP entry. Illegal message checking is performed by a subprogram
also located in the voted serp package.

TYPE voted_serp type IS RECORD

obne,ibnf : flow _control_type:

vid_is_simplex : BOOLEAN;

source_vid,dest_vid : vid_type;

class : class_type:;

obne_syndrome,ibnf_ syndrome,sb_vote syndrome : presence_type;
END RECORD;

The PID to VID package contains types used by the two internal translation tables.
The first table allows the scoreboard to read SERP entries in VID order (they are in PID order
inside the dual port RAM) and the second table allows the sender to cycle through the voted
SERP memory efficiently (see section 7.2.2.1 for a more in depth explanation). Each PID to
VID table entry is essentially the same as a CT entry. In an actual scoreboard, the members
in the CT would be {NE,PE} encodings while each member in the PID-t0-VID translation
table would be the address of the PID’s SERP entries.

TYPE pid_to_vid entry_type IS RECORD
vid : vid_type:;
redun_level : redun_level_type;
presence : presence_type;

members : members_type; -- these are really addresses
timeout : timeout_type;
END RECORD:

The vids-in-system translation table does not require a composite type. Instead, each entry is

merely an address into the voted SERP memory.

The final package in the model is the dual port ram package. It contains three array
declarations, one each to hold the CT, the SERP, and the message queue.

7.2.2. Entities

This section provides an overview of the entities in the hehavioral model. It gives the
reader an insight into the structure of the scoreboard and how the entities are organized. Note
that all the entities in the design are synchronous, meaning that all processes are sensitive to

the clock and have the following basic form23 :

example : PROCESS (clock)

BEGIN
IF clock = f1 AND clock'EVENT THEN
{

body of process
}
END IF;
END PROCESS;

The advantages of a fully synchronous design were discussed in section 5.2. Additionally,
all state machines within the design have the following basic form (this form is a
simplification of the CASE variation of Figure 5-5):

state_machine : PROCESS (clock,activating_signal)
TYPE state_type IS (s0,sl,s2);
BEGIN
IF clock = f1 AND clock'EVENT THEN
CASE state_signal IS
WHEN s0 =>
IF activating signal = active THEN
state_signal <= sl;
ELSE
{

}
END IF;

default assignments

WHEN s1 =>

etc.
END CASE;
END IF;
END PROCESS;

The state machine remains in the initial state until the activating signal is brought to an
active value. Otherwise, default assignments, which usually assign high-impedance values
to shared signals, occur.

23 This chapter uses the Vantage 46 state logic system for all control-like signals. All that really needs to

be known is that f1’ and {0’ are equivalent to ‘1’ and ‘0’, respectively.

74

Memory accesses within the model are assumed to take two clock cycles from the
time the address is asserted to data valid. This results from the synchronous nature of the

basic memory model, which is given below:

ENTITY example memory IS
GENERIC
(
read_delay: TIME := 10 ns
);
PORT
(
memory output : OUT memory entry type;
memory input: IN memory_encry_ type;
read write: IN t_wlogic;
address: IN resolved_address;
clock: IN t_wlogic
)i
END example_memory;

ARCHITECTURE example_memory OF example_memory IS
TYPE memory_type IS ARRAY (natural RANGE <>) OF memory entry_ type;
BEGIN
memory_ behavior : PROCESS (clock)
VARIABLE memory : memory type (mem base TO mem top):
BEGIN
IF clock = f1 AND clock’EVENT THEN
IF read_write = £0 THEN

memory (address) := memory_input;
ELSE
memory output <= memory{address) AFTER read_delay:
END IF;
END IF:

END PROCESS;
END example_memory;

All memories are built on the basic process model discussed previously. They
generally have one port as an input into the memory and one port for the output (some
memories are dual-ported). This has to be done to avoid writing resolution functions for
inout ports24, The memory itself is simply an array whose index is the memory address.
The generic read_delay is used to introduce an assignment delay. The purpose of this was

discussed in section 5.3.

The entity declaration for the entire scoreboard is contained below. Operation_in is
used by the NE to control the scoreboard, while operation_out is used by the scoreboard to tell
the NE what it's doing. The higher life form (HLF) signal indicates whether a fault-

24 While many types can be resolved (like logic types), resolving a composite type doesn’t make much

sense. Since abstract behavioral models incorporate many such types, memories must have explicit
in and out ports.

masking group is present in the system. Message_to_send tells the NE that a message is
waiting to be sent. Sb_address and read_write are used to extract CT and SERP entries and
write message entries. The data for these entries appears on the signals ct_data, serp_data,
and msg_data, respectively. The system-wide clock, generated by the testbench, appears on
the clock signal and is distributed to all entities with clock signals.

ENTITY scoreboard IS
PORT
(
operation_in: IN operation_type:
operation _out: OUT return operation_type:;
hlf: IN BOOLEAN;
message_to_send: OUT BOOLEAN;
sb_address: OUT resolved address
read write: OUT t_wlogic:
ct_data: IN ct_type:
serp_data: IN serp_type;
msg_data: OUT msg_type;
clock: IN t_wlogic;
):
END scoreboard;

7.2.2.1. Dual Port RAM

The dual port RAM entity holds the CT and SERP. Message information is written
into it by the sender. The dual port RAM and the scoreboard represent the top level
architecture, which the testbench instantiates and tests.

Below is the entity declaration for the dual port RAM. Address0, RWO (read/write),
Act_in, Aserp_in, and Amsg_out control the NE side of the RAM. Addressl, RW1, Bct_out,
Bserp_out, and Bmsg_in control the scoreboard side of the RAM. The modes of the data ports
represent the needs of the system. In other words, the unused ports, such as an Amsg_in, have

been removed.

ENTITY dpram IS
GENERIC
{
read delay: TIME := 10 ns
)i
PORT
(
address0: IN address_type;
RWO: IN t wlogic
Act_in: IN ct_type;
Aserp_in: IN serp_type;
Amsg out: OUT msg_type;
addressl: IN address_type;
RW1l: IN t_wlogic;
Bect_out: OUT ct_type;
Bserp_out: OUT serp_type:
Bmsg_In: IN msg_type := def_msg:
clock: IN t wlogic;

END dpram;
7.2.2.2, Voted SERP

The voted SERP memory is organized as 256 25 locations of one entry apiece. Any
given VID’s entry can be found by using its VID number as an address. Since even the
largest system will only contain a maximum of 40 VIDs, the voted SERP memory will be
sparsely populated. Memory is traded for speed in this case, since storing voted SERP entries

in a packed format would require a table-lookup or a content-addressable memory.

The voted SERP memory entity declaration is shown below. It is a dual ported
memory, except that portl has no input port. Port0_in is used by the voting and timeout
hardware to write voted SERP entries, while portl_out is used by the sender to read voted
SERP entries. Port0_out is presently unused.

ENTITY voted serp memory IS
GENERIC
(
read_delay: TIME := 10 ns
);
PORT
(
portl_rw: IN t_wlogic := f1;
port0_rw: IN t_wlogic:
clock: IN t_wlogic;
portl _out: OUT voted serp type;
portl_address: IN resolved address;
port0_address: IN address_type:
port0 out: OUT voted serp_type:;
port0_in: IN voted serp_type
):

END voted serp memory;
7.2.23. Pid-to-vid Table

The scoreboard uses two internal tables to assist it in processing the SERP. The pid-
to-vid table allows the scoreboard to read the SERP in VID order. This is important since that
is how SERP entries must be voted. Each table entry contains the source VID, redundancy
level, presence bits, and timeout value. The members array contains the dual port RAM
addresses of each of the VID members SERP entries. The pid-to-vid table and the vids-in-
system table (discussed in the next section) are regenerated when the scoreboard is reset and
whenever a CT update is performed.

25 This number is dependent on the maximum VID number.

T7

The pid-to-vid entity declaration is given below. It precisely follows the standard
memory model.

ENTITY pid to_vid IS
GENERIC
(
read delay: TIME := 10 ns
):
PORT
(
ptov_out: OUT pid_to_vid entry_type:
ptov_in: IN pid_to_vid_entry_type;
read_write: IN t_wlogic := fl;
address: IN resolved address
clock: IN t_wlogic;
):
END pid to_vid;

7.2.2.4. Vids-in-system Table

The vids-in-system table allows the sender to cycle through the voted SERP memory
efficiently by making a continuous traversal through the SERP. The vids-in-system table
contains the addresses in the voted SERP memory of all the active VIDs in the system.

The entity declaration for the vids-in-system table is given below. It also precisely
follows the standard memory model.

ENTITY vids_in_system IS
GENERIC
(
read delay: TIME := 10 ns
)
PORT
(
da.a_out: QUT address_type;
data_in: IN address_type;
rexd write: IN t_wlogic;
aoiress: IN resolved address;
clock: IN t_wlogic
):
END vids in system;

7.2.2.5. Voting and Timeout Subsection

The voting and timeout subsystem performs the voting and timeout functions of
SERP processing and writes the voted SERP entries into the voted SERP memory. It is
organized as three processes. One process reads a VID’s SERP entries, triggers the voter, and
writes the voted result into the voted SERP memory. A second process performs the voting

and timeout checking, and a third implements the scoreboard’s internal timer. The first two

processes are state machines of the form discussed in section 7.2.2. The voting is done via a

subprogram call. Section 7.2.1.3 discussed how the behavioral model performs voting.

The entity declaration for the voting and timeout hardware is shown below.
Start_voting signals the voting and timeout hardware to begin voting the SERP. It asserts
done_voting when SERP voting is complete. Num_vids is an integer which represents the
number of vids in the system. The voting and timeout hardware uses this value to tell when
all VIDS have been voted. Start_clear tells the voting and timeout hardware to start clearing
timeouts. When timeouts are cleared, it signals clear_done. Ptov_address, ptov_rw (rw
stands for read/write), and ptov_data are used to read entries from the pid-to-vid table.
Dpram_address, dpram_rw, and serp_data are used to read SERP entries from the dual-port
RAM. Voted_serp_address, voted_serp_rw, and voted_serp_data are used to write entries
into the voted SERP memory. The clock is the system clock from the top-level entity.

ENTITY vote_timeout IS
PORT

(
start_voting: IN BOOLEAN;
done_voting: OUT BOOLEAN;
num_vids: IN INTEGER:
start_clear: IN BOOLEAN;
clear_done: OUT BOOLEAN;
ptov_address: OUT resolved_address := high z address;
ptov_rw: OUT t_wlogic;
ptov_data: IN pid to_vid _entry type;
dpram_address: OUT resolved address := high_z_address:;
dpram rw: OUT t_wlogic;
serp data: IN serp_type:
voted_serp address: OUT address_type:;
voted_serp rw: OUT t_wlogic;
voted_serp data: OUT voted_serp_type;
clock: IN t_wlogic

):

END vote timeout;

7.2.2.6. Sender

The sender entity cycles through the voted SERP memory using the vids-in-system
table to check for valid messages. If the OBNE bit in a voted SERP entry is set, the potential
message is checked for validity. If the message is valid, the sender reads the voted SERP
entry corresponding to the destination VID. If the destinatio.a VID’s IBNF bit is set, the
message is enqueued. The sender has a priority pointer which is incremented after each
SERP cycle so that it begins looking for valid messages one vids-in-system table entry later.
In the initial model, the timestamp field of a message is generated from a signal internal to
the sender instead of from the timer used for timeouts.

The entity declaration for the sender is shown below. Start_processing tells the
sender to begin looking for valid messages. When the sender is completely finished
processing the current SERP, it signals done. Message_to_send is asserted by the sender
after it has found a valid message and written the message record into the dual-port RAM.
The NE asserts continue after it has sent the message. The hif signal affects valid messages
as discussed in section 6.4.2.2. The ct_update signal tells the sender to reset its priority
pointer to the beginning of the vids-in-system table. Num_vids is used by the sender to tell
when all voted SERP entries have been checked for messages. Pass_through feeds a tri-state
buffer which lets either the sender or the output from the vids-in-system table serve as the
address into the voted SERP memory. The output from the vids-in-system table is used when
OBNE bits are being checked, while the sender asserts the destination VID address after a set
OBNE bit is encountered. Vis_address, vis_rw, and vis_data are used to read entries from
the vids-in-system table. Voted_serp_address, vs_rw, and voted_serp_data are used to read
voted SERP entries. Dpram_address, dpram_rw, and msg_data are used to write message

records into the dual port RAM.

ENTITY sender IS
PORT

(
start_processing: IN BOOLEAN;
done: OUT BOOLEAN;
message_to_send: OUT BOOLEAN;
continue: IN BOOLEAN;
hlf: IN BOOLEAN;
ct_update: IN BOOLEAN;
num vids: IN INTEGER;
pass_through: OUT BOOLEAN;
vis_address: OUT resolved address;
vis_rw: OUT t_wlogic;
vis_data: IN address_type;
voted serp_address: OUT address_type:;
vs_rw: OUT t_wlogic;
voted_serp_data: IN voted serp type;
dpram_acdress: OUT resolved_address;
dpram_rw: OUT t_wlogic;
msg_data: OUT msg_type:
clock: IN t_wlogic

):

END sender;

7.2.2.17. Main Controller

The main controller receives commands from the NE and asserts internal control
signals to perform the correct actions in the proper order. The main controller is also
responsible for informing the NE when requested actions have been completed. The valid

commands were listed in section 7.2.1.4. The main controller also regenerates the pid-to-vid

and vids-in-system lookup tables during reset and CT update operations. The controller is
composed of three process statements, one for processing commands, one to handle SERP

processing, and one to generate the translation tables.

The grisly entity declaration for the main controller is shown below. Operation_in is
used by the testbench to contro) the operation of the scoreboard, while operation_out is used by
the scoreboard to inform the NE of what it is doing (see section 7.2.1.4 for the type
declarations). Message_to_send is asserted by the sender when it has found a message. The
main_controller asserts continue_processing after it receives a continue operation from the
NE. Start_voting is used to start the voting and timeout hardware, which asserts done_voting
when voting has been completed. Start_sender is then asserted to start the sender looking for
messages. The sender asserts sender_done when it has completed message searching
operations. The main controller asserts start_clear when it receives a clear_timeouts
message. The voting and timeout hardware asserts clear_done when the clear has been
completed. Ct_update is asserted by the main controller in response to a update_ct message.
This signal tells the sender to reset its internal priority pointer. The num_vids signal tells
the rest of the scoreboard how many active VIDs are in the CT. The remaining signals are
used only when the vids-in-system and pid-to-vid tables need regeneration.
Dpram_address, dpram_rw, and ct_data_in are used to read CT entries from the dual port
RAM. Ptov_address, ptov_rw, and ptov_data are used to write pid-to-vid entries into the pid-
to-vid table while vis_address,vis_rw, and vis_data are used to write vids-in-system entries

into the vids-in-system table.

ENTITY main_controller IS
PORT
(
operation_in: IN operation_type:;
operation_out: OUT return_operation_type;
message_to_send: IN BOOLEAN; -
continue_processing: OUT BOOLEAN;
start_voting: OUT BOOLEAN;
done_voting: IN BOOLEAN;
start_sender: QUT BOOLEAN;
sender_done: IN BOOLEAN;
start_clear: OUT BOOLEAN;
Clear_done: IN BOOLEAN;
ct_update: OUT BOOLEAN;
num_vids: OUT INTEGER;
dpram_address: OUT resolved address := high_z address;
dpram rw: OUT t_wlogic
ct_data_in: IN ct_type;
ptov_address: OUT resolved_address := high_z_address:
ptov_rw: OUT t wlogic:
ptov_data: OUT pid_to_vid entry_type;
vis_address: OUT resolved address;
vis_data: OUT address_type;
vis_rw: OUT t_wlogic;

81

clock: IN t_wlogic:
):
END main_controller;

7.2.2.8. Address_buffer

The address buffer entity is essentially a tri-state buffer for tri-stating addresses. It
is used by the sender to tri-state the output from the vids-in-system table so that it can assert
the address into the voted SERP memory. It assigns the output to the input when pass_through
is True and assigns high_z_address to the output when pass_through is False.

ENTITY address_buffer IS
PORT
(
pass_through: IN BOOLEAN;
clock: IN t_wlogic;

output: OUT resolved address;
input: IN resolved address
);

END address_buffer;

ARCHITECTURE address_buffer behavior OF address_buffer IS
BEGIN
output <= input WHEN pass_through ELSE
high z address;
END address_buffer_ behavior;

7.3. Functional Description

Following is the functional description of the behavioral model. The effects of each
major operation are explained in sequence, beginning with reset and ending with
process_new_SERP. The order roughly corresponds to the events surrounding power-up to
processing of the first SERP.

7.3.1. Reset

Before the scoreboard can perform any other action it must be reset. The reset causes
two separate actions to occur : update_CT and clear_timeouts. When both actions are

completed, the main controller signals reset_complete. Until then, it signals busy.
7.3.2. Clear_Timeouts

The clear_timeouts operation deletes all pending timeouts. A process within the
voting and timeout architecture cycles through the timeout memories, setting the timeout_set
field of each timeout entry to FALSE. Note that this function is not implemented in the initial
behavioral model.

7.3.3. Update_CT

The update_CT operation causes two separate initializations to occur. First, a process
within the main controller cycles through the CT looking for valid VIDs. When a VID with a
non-zero redundancy level is found, its CT entry is converted into a pid-to-vid table entry
and the VID number is added to the vids-in-system table. In the behavioral model, this
conversion means the CT entry is copied into the pid-to-vid table. In the structural models,
the {(NE,PE] pairs within the CT entry will be converted to addresses into the SERP memory.

The second intitialization simply performs a clear_timeouts operation.
7.3.4. Process_new_SERP

When the main controller receives a process_new_serp operation, it activates a
process which handles all the necessary actions for SERP processing. The first action of this
process is to activate the voting and timeout hardware which then votes the SERP. When the
entire SERP has been voted and the result stored in the voted SERP memory, the sender is
signalled to begin scanning for valid messages. When a message is found, the sender
signals the SERP-processing process, which handles the message sending protocol. The
message queue is not implemented in the initial model. Instead. the scoreboard idles until
the NE sends a continue operation. When the sender has scanned the entire voted SERP, it
signals the controlling process which in turn informs the NE that processing is complete.

The following paragraphs provide more detail.

When the voting and timeout hardware is signaled to do so, it reads SERP entries,
votes them, checks timeouts if necessary, and writes the result into the voted SERP memory.
First, the addresses in a pid-to-vid translation table entry are used to read out the
corresponding SERP entries. When all the SERP entries have been read, they are passed to a
process which handles the voting and timeout checking. The voting is done by a subprogram
which converts the SERP entries to bits, votes them, and converts them back to their original
types. After timeouts are checked, the voted SERP entry is assembled and written to the voted
SERP memory using the source VID as the address.

Once voting is completed, the sender is activated. The sender asserts an address into
the vids-in-system table, each entry of which is an address into the voted SERP memory.
When the resulting voted SERP entry appears on the data lines, the sender latches it and
checks the OBNE bit. If the OBNE bit is not set, the next address in the vids-in-system table is
asserted. If the OBNE bit is set, the potential message is checked for validity according to the

83

rules presented in section 6.4.2.2. The behavioral model does not flag invalid messages.
The sender then asserts the destination VID as an address into the voted SERP memory. If
the destination VID’s IBNF bit is not set, the next address in the vids-in-system table entry is
asserted. If it is set, the sender assembles a message record and informs the SERP
processing controller that a message needs to be sent. The sender repeats this cycle until all
the voted SERP entries have been processed.

7.4. Performance

The model estimates the following performance figures using a 25 MHz (40 ns)

clock:
Operation Time (us)
reset 31.6
~CT update 31.6
process_new_SERP to first message 14.5
process SERP and send all messages’i 19.7

" Half of the VIDs source a message
7.5. Verification and Testing

The informal verification of the model involved two basic steps. The first was to
write a test vector2é generator in C based on the functional description of the scoreboard. The
second was to write a VHDL testbench to read in these vectors from an external file, apply
them to the behavioral model, and check the resulting outputs for validity. The following two
sections discuss the algorithm used by the C program to generate test vectors and the testbench
which reads and applies them.

7.5.1. C Program

Test vector generation begins by generating a CT. This is done by randomly
generating a redundancy level (either 1,3 or 4) and attempting to fill it by cycling through the
NE’s and assigning a free PE from each until the VID is filled. If not enough free PEs are
available to fill a VID, a new redundancy level is generated and the process repeats.
Successful population of a VID allows the program to enter it in the CT?27,

26 Scoreboard test vectors consist of a CT and a number of SERPs generated from that CT.

2T The presence bits are fabricated and a VID number and timeout value are randomly generated first.

8

After all PEs have been assigned to a VID, the program begins to randomly generate
messages. A source VID is chosen from a pool of free source VIDs and a destination VID is
randomly generated (the destination VID number must correspond to a valid VID). Once the
source and destination are selected the SERP entries are produced. The IBNF bits of the
destination VID’s members and the OBNE bits of the source VID’s members are asserted.
The exchange class and destination VID fields are also written. In the current version of the
program (version 2.2), the exchange class is fixed and no user byte is written. The program

produces messages until all VIDs have been used as sources.

The program writes each CT and SERP to an external file. All output is printable
ASCII and entirely numeric. This ensures that the VHDL testbench has no problems reading
and interpreting the file using the TEXTIO package.

7.5.2. Testbench

The scoreboard testbench simply instantiates the top level entity, which in the initial
model encompasses both the scoreboard and the dual-port RAM, and feeds the model CTs and
SERPs. The testbench first reads a CT from the test vector file, writes it into the dual-port
RAM, and then tells the scoreboard to reset. After the reset is complete, the testbench reads the
first SERP from the fiie, writes it into the dual-port RAM, and tells the scoreboard to process
it. Each message the scoreboard sends is acknowledged by the testbench but currently only
manual checks on message correctness are performed. When the scoreboard signals that
SERP processing is complete, the testbench reads the next SERP from the file, writes it into
the dual-port RAM, and tells the scoreboard to process it. This cycle is repeated as often as

desired. The testbench is also responsible for generating the system-wide clock.
7.6. Limitations

The purpose of this section is to make explicit all the deficiencies of the VHDL model
of the scoreboard. Many of these deficiencies were designed to limit complexity or resulted

from changes in the algorithm. There was insufficient time to solve them.

= The C program needs rewriting to implement faults. This is the most serious
limitation, for without the ability to generate faults or turn on OBNE bits over
multiple SERP cycles, for example, much of the scoreboard is untested (i.e. the

voter and the timeout mechanism).

< The main controller is really gross and kludgy since it was written
incremertally. Most of its code is unnecessary, a fact discovered only after it was

written.
< Timeout expiration is calculated incorrectly.

© The message sending protocol presented in the algorithm is not implemented.

Instead, the scoreboard waits after each message for clearance to continue.

= IBNF bits are not cleared after sending a message. Thus, a VID could receive

more than one message in a cycle.
© Invalid destination VIDs are not flagged.
< The model does not support a load timer operation.
< Full message validity checking is not implemented.
< The structural voter has not been tested.

< The testbench needs to perform complete message checking.

8. Discussions on Implementation

This chapter discusses a number of scoreboard implementation possibilities, shown
in tree form i.: Figure 8-1. The conclusion of this chapter is that, in order to ensure a working
implementation which meets throughput goals, an ASIC must be built, preferably using
VHDL synthesis. If for some reason (such as cost) an ASIC cannot be constructed, the next
best implementation would be to use a CPU. The sections following explain the advantages
and disadvantages of each possibility in detail.

Synthesis Gate-Level Design

N~

CPU FPGA ASIC

CPU + FPGA

Figure 8-1, Implementation Tree
8.1. General Purpose Microprocessor

The simplest and most cost-efficient method for implementing the scoreboard is with
a general purpose microprocessor. Since speed is the main goal, the preferred processor
would be a RISC model, such as a SPARC or Motorola 88000. Figure 8-2 below shows the basic
block diagram of such a design. It would consist of the processor, some dedicated memory,
an external timer for timeouts28, glue logic,and a dual-port RAM for communication
between it and the rest of the NE. The dual-port RAM would hold the SERP, CT, and the

28 Though certain RISC processors (like the AMD 29000) have buiit-in timers, they could not be used
because the timers in each scorehoard instance must be kept synchronized.

87

messages the scoreboard finds, while the private memory would hold any lookup tables used
to speed SERP processing.

private memory AJ |
s | X
glue logic
scoreboard ____r—
(CPU) NE
timer I P
. dual-port RAM]

Figure 8-2, RISC scoreboard

The chief advantage to a RISC design is ease of design. Designing such a scoreboard
would be simple since the only tricky part would be the glue logic, whose function it would be
to interface to the NE'’s controller. The rest of the design is a simple matter of wiring pins
together. The software design would be more complex, but still not too difficult since the
scoreboard algorithm is easily expressed in C 29. Example code for such a design can be
found in Appendix 10.3. Because of its simplicity, a RISC scoreboard design is also easily
changed.

The advantages of this design are compelling, so much so that it would be difficult to
justify any other implementation save for two crippling disadvantages — performance and
area. A feel for the performance can be obtained by examining some example scoreboard C
code. The code whi~h gets exccuted most often is the voting code, shown in Figure 8-3. Using
fully optimized assembly language, 62 instructions are required to vote the OBNE bits of a
triplex. Assuming an all triplex configuration (13 VIDS), 806 instructions would be executed
to reach the conclusion that the SERP contains no messages. Using a 25 MHz processor (40

29 For a deliverable system, hand optimized assembly language would yield the best performance.

8

R

ns/instruction), this minimum case will require 32.2 us to complete. When the overhead of

performing timeouts and

voting the rest of the SERP information is added, the scoreboard

will be too slow to support real-time tasks with iteration rates of 100 Hertz.

/ti!ktttiit*iti"t't!t't'lQiQi*i**ﬁ‘*'!itiﬁt'tiit'tt‘ittti"'!!
*/
/* vote is a generic vote function which will vote up to 4
*/
/* items passed to it.
/tit*ttttttttttttt!t*'t'ttttittttt!ﬂt!tttttittt*tttltttt"'tt'
*/
int vote (a&a,b,c,d,redun_level,is_flow_control,unan)
int a,b,c,d,is_flow_control, redun_level, *unan;
{
int result;
switch (redun_level)
{
case 4:
*unar = ((a == b) && (b == ¢) &&§ (c == d)) ? TRUE FALSE;
if (is_flow_control)
result = (a&bsc) | (akcsd) | (bscsd) | (a&bsd};
else
result = (agb) | (bsc) | (c&d} | (asc) | (a&d) | (b&d);
break;
case 3:
*unan = {(a == b) &§ (b == ¢)) ? TRUE : FALSE:
result = (a & b) | (£t & c) | (a &)
break;
case i:
*unan = TRUE;
result = a;
break;
others:
break;
)
return(resuli);
/* end vote */
Figure 8-3, C Voting Code

The second disadvantage of a RISC scoreboard is area. RISC chips alone are very

large (approximately 200

pins is typical). The addition of support chips would cause the

design to consume a large percentage of available board area.Thus, even though a RISC

scoreboard is attractive from a design standpoint, it is unable to meet the design goals of C3.

8.2. FPGA

A second alternative for implementing the scoreboard is with Field Programmable
Gate Arrays (FPGA). FPGAs have the advantages of relatively high-density, low cost, and

reprogrammability. Most

of them also have good design systems. Furthermore, an FPGA

implementation would probably be able to meet performance goals. An FPGA

implementation has three major disadvantages, though.

First, the design task would be long and complex. A student at CSDL recently
completed two FPGA designs for his MS Thesis [Sak91], one of which was a voter. The voter
alone consumed an entire FPGA and could barely run at 12.5 MHz (a 25 MHz scoreboard is
the goal). The scoreboard must contain a voter along with an abundance of additional
hardware. Partitioning the design into multiple FPGAs would be a nightmare.

A second disadvantage is that the existing VHDL scoreboard models would be useless
for designing the FPGAs. Although some companies have promised VHDL support for their
FPGA design systems, such a capability is not currently available. With all the effort put
forth into VHDL modeling (and the concomitant advantages), it would be undesirable to

throw it all away.

The final disadvantage is verification. With VHDL, verification would proceed
concurrently with transformation of the design to the gate level. Each step would be verified
to ensure that the new model is correct and that design goals are being met. With an FPGA
implementation, however, verification of the design would be much more difficult because it
would be spread over multiple FPGAs. Verifying each FPGA would also be difficult because
it would only perform a subsection of the full algorithm30.

8.3. Combination

Another implementation strategy is to combine the CPU and FPGA. An FPGA could
perform the speed critical task of voting while the CPU could take care of everything else
including feeding the voter. This method would yield a fast enough design. However, it is
probable that the overhead of reading SERP entries, writing them to the voter, and reading the
result would incur the same overhead as software voting, since loads and stores are usually
multiple cycle instructions. A solution would be to add address generation hardware to the
voter so that it could read SERP entries on its own. If this is done, then why use a CPU at all?

30 1t could be possible to generate test-vectors for the FPGA with a VHDL model, but the VHDL mode!
would have to reflect the organization and gate-structure of the FPGAs. This would entail two
complete designs of the scoreboard, one in VHDL and one in FPGAs, thus making this solution
prohibitive.

Why not throw on the additional hardware to perform the rest of the scoreboard function? In
short, a full FPGA implementation would be preferable to this option.

84. ASIC

The final implementation strategy is to use an ASIC. An ASIC has the advantages of
speed, size, and verifiability but the disadvantage of high cost and high risk relative to the
other implementation strategies. Two different paths exist for creating an ASIC ~ VHDL
synthesis and gate level design. As previous sections have shown, using VHDL with
synthesis is the preferred path.

There is little question that the fastest implementation is an ASIC. A single chip
would also consume the least area of all the choices. Verifiability would also be the smoothest
since the VHDL testbench could be used for all the functional test vectors. Additionally, good
synthesis systems automatically insert additional hardware to aid final testing (i.e. scan-
path). The problem with the ASIC approach is cost and risk. However, an ASIC is the best

option for optimizing scoreboard performance.

As a sidenote, no matter which implementation method is chosen an emulator can be
used to allow development of the rest of the NE while the scoreboard is being designed. This
emulator would consist of a C (or similar) program running on a single-board computer.
The NE could be set up to temporarily write SERPs and CTs into memory on board the
emulator. The emulator would then process them and write messages back to the NE. To the

NE, the emulator would simply appear as a slow scoreboard.

91

9. Conclusions and Recommendations

This thesis has discussed the advantages of using VHDL to design digital hardware.
It also discussed modeling issues and applied them to the specification and modeling of the

FTPP scoreboard. Finally, implementation options were discussed.

The main conclusion of this thesis is that VHDL, combined with the top-down design
methodology, is a viable and useful digital hardware design method. The use of VHDL
shortens the design cycle by facilitating the specification and verification of designs early
in their life. Furthermore, abstract behavioral modeling, though requiring the rewriting of
entity declarations, has been shown to be useful when little is known about implementation.
The discussion on implementation concluded that an ASIC scoreboard would yield the best

cost/performance, followed by a RISC-based scoreboard.

A great deal of work must be accomplished before a working scoreboard can be
constructed. The author took the first step by structuralizing the voting and timeout
hardware. As of this writing, though, it had not been tested. The same process of
structuralization must be performed for all the entities in the behavioral VHDL model. After
this has been accomplished, a VHDL synthesis tool could be used to produce a gate-level
netlist. The test vector generator also requires an extensive rewrite to accommodate fault

generation.

One implementation issue that was not discussed and should be further researched is
that of using content-addressable memory for the voted SERP. It has the capability to reduce
the memory demands of the scoreboard, both by reducing the size of the voted SERP memory

and by eliminating the need for the vids-in-system table.

10. Appendices
10.1. Glossary of Terms

CHDL -
CSDL.-
FCR-

VHDL -
VHSIC -

Computer Hardware Description Language.
Charles Stark Draper Laboratory

Fault Containment Region : A circuit incapable of propagating internal
har?ware faults past its borders. This is achieved (usually) through physical and
electrical isolation.

Fault Tolerant Parallel Processor : A prototype fault-tolerant computer
constructed to achieve high performance and high reliability for critical
computing applications. See Figure 1 for a diagram.

Higher Life Form bit. This bit, used internally by the scoreboard when
processing messages, indicates that at least one triplex or quad exists in the
system.

Local Exchange Request Pattern : A data structure generated by each NE which
contains message data for each PE in that NE. Spec ifically, the LERP contains
whether the PE has a message to send and to whom and if the PE is able to receive
a packet.

Language Reference Manual. This refers to the standard IEEE document on the
VHDL language.

Network Element : The part of the FTPP responsible for sending and receiving
packets on behalf of the PE’s.

Ne¢twork Element Fault Tolerant Processor. A minimum Byzantine Resilient
computer system used to demonstrate the utility of high-speed, fiber-optic data
links.

The 64 byte block of data exchanged by-the NE. Each inter-PE message is
packetized by the NE before it is sent.

Processing Element : The part of the FTPP which performs the computations.
Usually a single-board computer.

System Exchange Reque st Pattern : A data structure composed of the
concatenation of the LERP from each FCR.

VHSIC Hardware Description Language

Very High Speed Integrated Circuit

10.2. Scoreboard Algorithm

This appendix contains the scoreboard algorithm flowchart. Shadowed boxes refer to
different pages.

Begin
Processing the
SERP

Vote the SERP

Look for Valid
Messages

End
Processing

)
Begin processing
SERP

Pull VID's SERP
entries from the g~

SERP

data vote
destination VID

data vote
exchange class

Save the VID's voted
values along with the
three syndromes in a

voted SERP entry

All VIDs voted ?

yes

Timeout Function

Flow Control Vote
Function

vote the passed

information

unanimous
set ?

yes

generate a vote
syndrome

return

Flow control
majority function

v

CASE
redundancy level
IS
| triplex
simplex l quad
OBNE:10f1 OBNE:20f3 OBNE:30f 4
IBNF :00f1 IBNF:20f3 IBNF :30f 4
return

return Timeout Function

read timer and
clear voted store value in TO set for
OBNE/IBNF bit [® | VID's timeout ["° errant VID?

memory location

?

yes

compare stored timer
value to current value
of timer using timeout
field in VID's CT
entry

no - TO reached?

PE is faulty, so
ignore it

data voting

function

voted result equals
majority vote of
inputs

MAJORITY RULE
redundancy level

simplex

L

1of3

triplex

quad

203

2aof4

generate a vote
syndrome -

return

101

all IBNF

ne

bitsont ?
yoo
Pull next VID's S cloar broad
veted SERP entry send the pending kit
yes
e 11,
all IBNF
bits set ?
yes
message a set broadeast
é"" =¥ pending bit
no
Check Message
Validity
pull destination
VID's voted SERP
entry
dest VID's clear TBNF bit of
IBNF wt ? 7O = " daatinetion Send the Message
ne
all OBNE
l > - e ™ m
checked ?

Begin
IaVIDa yes Is message a yos Is the HLF bit
simplex ? CT update ? set?
no yes
no I j
Is dest VID
valid ? no set dest VID to 255
yes
set exchange class and
i i to
T okoei iy SR [gt G
* always enabled for
aull v)

yes

returm

103

Begin

Istherea
message in the
queue ?

no

wait for the queue to
clear

enqueue the
message

return

104

10.3. Sample Scoreboard Code

This appendix contains a C program which implements (most) of the scoreboard
algorithm. It is intended as an example of code for a RISC scoreboard.

/* Scoreboard simulation program

by
Dennis Morton
5 May 1991

embedded scoreboard implementation
*/

/i."..t'tﬁtit""itﬁ"."'ﬁ.'.'tt‘iiitttii'*ﬁﬁ‘ﬁ"'"."ttttt""tttﬁ/

/* This header contains globals used by the simulation */

/..".""‘t'ttt.ﬁ...ﬁ'.iit"ﬁi"itt'ﬁ't"t"*‘i"‘l’i.ﬁ'ﬁ"""'t'ﬁ"t'/

#define TRUE 1
#define FALSE 0

#define NUM_VIDS 256
#define MAX_VIDS_IN_SYSTEM
#define PE_PER_NE 8
tdefine NUM_NE 5

#define MAX_REDUN_LEVEL 4

#define OBNE_MASK 0x80000000
tdefine IBNF_MASK 0x40000000
tdefine DATA_MASK OxOOffffff
#define DEST_VID MASK 0x00ff0000
#define CLASS_MASK 0x0000ff00
tdefine BROADCAST_MASK 0x00008000
tdefine USER_BYTE_MASK 0x000000ff

#define UNAN_SYNDROME 0

typedef struct ct_entry_type
{

int vid;

int redun_level;

int presence(NUM_NE]);

int timeout_value;

int pids[MAX_REDUN_LEVEL]};
b

typedef struct message_type
{
int obne_syndrome, ibnf_syndrome,data_syndrome;
int source_vid,dest_vid;
int timestamp;
)i
struct ct_entry type ct({NUM_VIDS],ct_entry;
struct ct_entry type translation_table[MAX_VIDS_IN_SYSTEM],translation_entry;
struct message_type message;
int serp{PE_PER_NE * NUM_NE];
int timeouts[NUM_VIDS];
int num_vids_in_system;

/"'.t't't.‘t‘.t.'."'.tﬁ..i"tt't".*'i."'.'.tti'..iii...iittﬁ't/

106

/* vote is a generic vote function which will vote up to 4 */
/* items passed to it. */

/tithtitttttttititttﬁtﬁttt't'itt'tti'ttttttttt'tt'tttitttt'tﬁ't'it/

int vote (a,b,c,d,redun_level,is_ flow_control, unan)
int a,b,c,d,is_flow_control,redun_level, *unan;
{

int result;

switch (redun_level)

{
case 4:
*unan = ((a == b) g& (b == ¢) §& (c == d)) ? TRUE : FALSE;
if (is_flow_control)
result = (atbec) | (atcid) | (beced) | (aebid);
else
result = (a&b) | (b&c) | (c&d) | (a&c) | (a&d) | (bed);
break;
case 3:
*unan = ({(a == b) & (b ==~ ¢c)) ? TRUE : FALSE;
result = (a & b) | (b & ¢c) | (a & ¢}
break;
case 1:
*unan = TRUE;
result = a;
break;
others:
break;

}
return(result);
}
/* end vote */

VARAARARAS A AR RSt AR A Rttt il ittt il sttt iils il

/* check_to checks to see if the timeout value (to_value) has been */

/* reached. If it has, then it returns a true value for to_reached. */
/'ﬁi.'.'t"tt"'.ﬁ"ﬁt'tt"'."titt'ti'i".ttt'tiit.ﬁ"i."tt""t"'ﬁl/

int check_to (vid,to_value)
int vid,to_value;
{
int to_reached = FALSE;
int timer_value,timeout_value;

timer_value = read_timer();
timeout_value = timeouts{vid];
if (timeout_value == 0)
timeouts{vid] = timer_value; /* TO set? then set a timeout */
else if ((timer_value - timeout_value) > to_value)
{
to_reached = TRUE;
timeocuts{vid] « 0;
}
return (to_reached);
)
/* end check_to */

/.'"'ﬁ""".I".""".'.'."ﬁ‘."..."t."‘.'t..'.""'"..'ﬁ"i"'/

/* fc_vote performs the flow control vote function (i.e. OBNE */
/* and IBNF). */

/....!'.."."""'i."Qt.‘.'ﬁ.""li'."ti'...'t.i"..ﬁit'i'*".'i'it/

int fc_vote (vid,a,b,c,d,redun_level,to_value, syndrome)
int vid,a,b,c,d,redun_level,to_value,'syndrome;

int i,unan,result;

result = vote (a,b,c,d,redun_level, TRUE, ¢unan);

if (unan)

*syndrome = UNAN_SYNDROME;
else
{

/* generate syndrome here */

}

if (!(unan) && (result != 0)) /* check for timeouts */
if (!(check_to (vid,to_value)))
/* timeout has not expired */
result = FALSE;
return (result);

’
/* end fc_vote */

/'t-ﬁiﬁ'ii'.'*"ti‘iti.titl’tt'tt"i"tt'*i'ﬁ'ﬁti'it"tti'tit'ﬁ"/
/* vote_other is the function which votes the destination */
/* VID and exchange class fields of the SERP. */

VAAAAAR AR LRSS RSttt iRl sl sl ittt il ll)

int vote_data (a,b,c,d,redun_level, syndrome)
int a,b,c,d,redun_level, *syndrome;
{

int result,unan;

result = vote (a,b,c,d,redun_level,{unan);
if (unan)
*syndrome = UNAN_SYNDROME;
else
{
/* generate syndrome here */
}

return (result);
}
/* end vote other */

VAAAAAL AL RS SRR R LR L BRIToLE-) serp LWAEAARAE AL ARt

/* vote_serp votes the SERP using the translation table to read */

/* entries out in VID order. It sends all messages it finds. */
/‘Qltttﬁi.t..itt'-.itQ"tQitt'ﬂ'ti."i't"t";'ﬁ.*Itti"tii.'it'ii/

void vote_serp ()

{
int obne_unan,ibnf_unan;
int obne_syndrome, ibnf_syndrome,data_syndrome;
int obne,1bnf,data,ex_class,dest_vid?user_byte;
int a,b,c,d,i;
static int broadcast_pending = FALSE;

if (! (broadcast_ pending))
for (i = 0; ({1 <= num_vids_in_system) && (!broadcast_pending)); 1++)
{
translation_entry = translation_table(i];
a = serp(translation_entry.pids{0)] & OBNE_MASK;
b = serpltranslation_entry.pids(1l)] & OBNE_MASK;
¢ = serp(translation_entry.pids(2]) & OBNE_MASK;
d = serp(translation_entry.pids[3])] & OBNE_MASK;
obne = fc_vote(translation_entry.vid,a,b,c,d,

107

-—

oanoUe

/'

translation_entry.redun_level,
translation_entry.timeout_value,éobne_syndrome);

{obne)
serp(translation_entry.pids[0]] & DATA_MASK;
serp(translation_entry.pids[1]] & DATA_MASK;
= serpltranslation_entry.pids[2]] & DATA_MASK;
= serpltranslation_entry.pids(3]) & DATA_MASK;

vote the exchange class, destination VID, and user byte */

data = vote_data (translation_entry.vid,a,b,c,d,

/*
if

el
{

/*

translation_entry.redun_level, édata_syndrome;;

if message is a broadcast, processing is complete */

(data & BROADCAST_MASK)
broadcast_pending = TRUE;
se

dest_vid = data & DEST VID_MASK;

/* check ibnf bit of destination vid */

ct_entry = ctidest_vid];

a = serplct_entry.pids(0]] & IBNF_MASK;

b = serp(ct_entry.pids[1]] & IBNF_MASK;

c = serp(ct_entry.pids{2)] & IBNF_MASK;

d = serpl{ct_entry.pidsi3]] & IBNF_MASK;

ibnf = fc_vote{ct_entry.vid,a,b,c,d,ct_entry.redun_level,

ct_entry.timeout_value, &ibnf_syndrome);

if (ibnf)

{
/* send a message */
message.obne_syndrome = obne_syndrome;
message.ibnf_syndrome = ibnf_ syndrome;
message.data_syndrome = data_syndrome;
message.source_vid = translation_entry.vid;
message.dest_vid = ct_entry.vid;
message.timestamp = Oxff;

do broadcast stuff */

10.4. Recommended Style Guide

I recommend adhering to the following style guide when modifying the scoreboard
VHDL code in order to keep it uniform.

1. separate out the keywords by putting them in all capital letters.
2. use liberal indentation
3. follow this naming guide for constructs:

¢ entities : descriptive name

¢ architectures : eﬁtity_name_(behavioral,rtl,structural)

¢ configuration : c(architecture_name)

* packages : (descriptive name)_package

types : (descriptive_name)_type;

4. Model state machines using the method I describe in section 5.1.

108

10.5. Pitfalls to Avoid

The following is a list of pitfalls to avoid when using the Vantage Spreadsheet VHDL
tool.

* once you change the grid, keep it congistent (I use a 5 point grid). Otherwise,
signals will not connect to ports of entities created with a smaller grid if the port
falls between grid points in the instantiating architecture.

* do not make port names visible to avoid unsightly clutter.

¢ when creating an entity, always draw the box larger then necessary since

resizing it later is a pain.

¢ If a change is made to an component which is instantiated in an architecture, that
component must be re-instantiated for the update to be reflected in the
architecture. However, do not simply delete the old component, since any
dangling signals will have to be redrawn. Instead, add a second component
directly on top of the old component. Then, select them both and do an inform to
find out the new components name (It'll be something like COMP 000025). The
choose “unselect by name” and then delete. Do a screen update to see the new

component. Be sure to rename it if the old component had a special name.

110

10.6. VHDL Behavioral Description

- — —ae . -

: This appendix contains the complete VHDL source code for the behavioral model of
the scoreboard. The files are in the same order as presented in section 7.2.

10.6.1. Scoreboard Package

e E E R 22222 2XX22Z22222 2 2 A A 2 2 A 222 AR RS ARl il ddlildll]

-- Scoreboard package declaration

-- This package contains data types and constants used throughout the
-- scoreboard entity. It is visible throughout the entire design

LIBRARY score;

USE score.address_package.ALL;
USE std.std_logic.ALL;

USE std.std_ttl.ALL;

-- Note that deferred constants cannot be used very often in this
-- section because their values are needed later on in the package
-~ declaration

PACKAGE scoreboard_package IS
~- define the clock_period

CONSTANT clock_period : TIME;
CONSTANT control delay : TIME;

-- declare configuration type data (global in scope)

COMSTART num_ne : INTEGER := 5;
CONSTANT pe per_ne : INTEGER := 16;
CONSTART max_vid : INTEGER := 255;
CONSTART max_redun_level : INTEGER := 4;

SUBTYPE pe_loc_type IS INTEGER RANGE 0 TO (pe_per_ne * num_ne - 1);

-- starting locations in the dual port ram
CONSTANT dpram_size : INTEGER;
CORSTANT mem_base : address_type;
CONSTANT serp base : address_type;
i CONSTANRT ct_base : address_type;
: COMSTANT msg_base : address_type;

-~ declare SERP related items
SUBTYPE flow_control_type IS BOOLEAN;
SUBTYPE vid_type IS INTEGER RANGE 0 TO max_vid;
S8UBTYPE broadcast_type IS BOOLEAN;
SUBTYPE packet_type IS INTEGER RANGE O TO 3;
BUBTYPE ex_class_type IS INTEGER RARGE 0 TO 7;

TYPE class_type IS RECORD
broadcast : BOOLEAN;
packet : packet_type;
ex_class : ex_class_type;
ERD RECORD;

11

. — b

e e

PR

-~ NOTICE that in this simulation nc wser byte 1s included. I'm still
-- debating whether to include it. The hooks will be there no matter
-~ what, though.

TYPE serp_type IS RECORD
obne, ibnf : flow_control type;
dest_vid : vid_type;
class : class_type;

END RECORD;

-- declare configuration table related items

TYPE redun_level type IS (zero,simplex,triplex,quad);

TYPE presence_type IS ARRAY(0 TO (num_ne - °,) OF BOOLEAN;

TYPE members_type IS ARRAY(0 TO (max_redun_level - 1)) OF pe_loc_type;
SUBTYPE timeout_type IS INTEGER RANGE 0 TO 255;

TYPE ct_type IS RECORD
vid_number : vid_type;
redun_level : redun_level type;
Fresence : presence_type;
members : members_type;
timeout : timeout_type;

END RECORD:;

-- the msg_data type is used to pass message data outside the scoreboard

TYPE msg_type IS RECORD

source_vid,dest_vid : vid_type;

class : class_type;

timestamp : TIME;

cbne_syndrome, ibnf_syndrome, vote_syndrome : presence_type;

size : NATURAL;
END RECORD:

~- define default constants for all the types in case an IN port of
-- these types wants to remain OPEN (won't work otherwise)

CONSTANT def _class : class_type;
CONSTANT def presence : presence_type;
CONSTANT def_members : members_type;
CONSTANT def_serp : serp_type;
CONSTANT def_ct : ct_type;

CONSTANT def_msg : msg_type;

ECAAA LA R AR AR AL AL A SRS ARl R R 2 2 R R 22 R R TR TSRS L2 2

-- These next two functions are used to convert redun_level_type to and
-- from an INTEGER

FURCTION redun_to_int (redun : IN redun_level_type)
RETURN INTEGER;

FUNCTION int_to_redun (int : IN INTEGER)
RETURN redun_level_type;

EWD scoreboard_package;

AR AAS RS AR RS A2 2 R R R R R R e Y R R R AR AR RN

== scoreboard_package body

PACKAGE BODY scoreboard package IS

CONSTANT clock_period : TIME := 40 ns;
CONSTANT control_deiay : TIME := clock_period/4;

-- starting locations in the dual port ram

CONSTANT dpram_size : INTEGER := 300;

COMSTANT mem_base : address_type := =-1;

COMSTANYT serp_base : address_tyme := 0;

CONSTANT ct_base : address_type := dpram_size + 1;
CONSTANT msg_base : address_type :!= 2*dpram _size + 1;

~- Give values to the default constants

CONSTANT def_class : class_type := {(FALSE,0,0);
CONSTANT def_presence : presence _type := (FALSE,FALSE,FALSE,FALSE,FALSE);
CONSTANT def members : members_type := (0,0,0,0);

CONSTANT def_serp : serp_type := (FALSE,FALSE,O0,def_class);
CONSTANT def ct : ct_type := (0,zero,def_presence,def_members,0);
CONSTART def msg : msg_type := (C,0,def_class, 0 ns,def presence,

def_presence,def_presence,0);

P AL AR AL LA AR SRR LR R R R R R R R A T T T I T

-- Elaborate the two conversiorn functions

FORCTION redun_to_int (redun : IN redun_level type)
RETURN INTEGER IS
BEGIN
CASE redun IS
WBEN zero =>
RETURN ©;

WHEN simplex =>
RETORN ;

WEEN trip.ex =>
RETOURN 3;

WHEN quad =>
RETURN 4;
END CASE;
END;

FUACTION int_to_redun (int : IN INTEGER)
RETURN redun_level type 18
BRGIN
CASE int IS
WEEN O =>
RETORN zero;

WHEN 1 =>
RETORN simplex;

WEEN 3 =>
RETORN triplex;

113

WHEN 4 =>
RETUORN quad;

WHEN OTHBERS =>
ASSERT FALSE REPORT
RETURN zero;

ERD CASE;
END;

END scoreboard_package;

"Integer Does

Not Convert

114

to redun™;

10.6.2. Address Package

ey Y2222 E SR RE RS RS RSS2 ARl ittt i il R E XN R

-- Address Package Declaration

-- This package contains data types and a resolution function for
~- memory addresses. This package is included in all memory entities
-- and those which access them.

- " _ = - -~ - —— - = - —

LIBRARY score;
USE std.std_logic.ALL;
USE std.std ttl.ALL;

PACKAGE address_package IS

SUBTYPE address_type IS INTEGER RANGE -1 TO INTEGER'RIGET;

e 222 R Rl A R R R R R R R 222 AR R 22 R RS R ERE FRE R R R

-- Define a resolved address type. Somewhat kludgy, but it'll work.

CONSTANT high_z_address : address_type;
TYPE address_array IS ARRAY (NATURAL RARGE <>) OF address_type;

FONCTIOR resolve_address (addresses: IN address_array)
RETURR address_type;

SUBTYPE resolved_address IS resclve address address_type;

A A A A AL R SRSl Rl AR R 2R R e e R X AR AR R R TR R BRR 2R TR

END address_package;

PACKAGE BODY address_package IS

A S A AR A AL A AR R R LSRR R R R R E LR R EEEE RS RS R LR R R R R R R R R R R R PP R LR R PR
-- Address_x; is resolved by checking for address_type'RIGHT. This

-- value is arzliogous to the '2' st te of tri-state logic. In other

-~ words, a value of dpram_size*3 does not have an effect

CONSTART high_z address : address_type := -1;

FUNCTION resolve_address (addresses: IN address_array)
RETURN address_type 18

VARIABLE result : address_type;
VARIABLE "emp_ i : INTEGER;
VARIABLE :-und_one,more_than_one : BOOLEAN := FALSE;

BEGIN
result := high_z_address;

-- If no inputs then default to address'RIGHT
IF (addresses'LENGTH = 0) THEN
RETURR result;
ELSIF (addresses'LENGTH = 1) THER

115

RETURN addresses(addresses'LOW);
-~ Calculate value based on inputs
ELSE

-- Iterate through all inputs
FOR i IN addresses'LOW TO addresses'HIGHE LOOP
I¥ (addresses(i) = high_z_address) THEN
WEXT;
ELSIF MOT found_one THEN
result := addresses(i);
found_one := TRUE;
ELSE
more_than_one := TRUE;
END IF;
END LOOP;
IF more_than_one THEN
result := high_z_address;
- ASSERT FALSE
-- REPORT "Address line has more than one driver"
-- SEVERITY ERROR;
END IF:

-- Return the resultant value
RETURN result;
END IF;
END;

END address_package;

116

10.6.3. Voter Package

ey 4 2222222222222 222222 RSl R 222222 R2 2]

-- Voter Packzge

-- This package contains subprograms to convert high level data types
-- to bit vectors so that they can be easily voted

LIBRARY score;

USE score.scoreboard_package.ALL;

USE score.voted_serp package.ALL;

USE std.std_logic.ALL:

USE std.std_cmos.ALL;

PACKAGE voter_ package IS

sy £ 52222222 222222 22222222l s iRt lR 2222 R AR 2 2R XY 24

~-- Declare a type to hold an array of serp entries. This models the
~-- registers at the input to the voter.

TYPE serp_array IS ARRAY (NATURAL RANGE <>) OF serp_type;

i A2l AR R R AR AR Sl AR R R AR AR R S RS R R A XA R RS R R LSRR RS LR 2R

-- Declare timeout memory related stuff

CONSTANT timer_resolution : INTEGER := 16;
SUBTYPE timer range IS INTEGER RANGE 0 TO (2**timer resolution - 1);
TYPE timer_type IS RECORD
timeout_set : BOOLEAN;
value : timer_range;
END RECORD:

TYPE timeout _memory type IS ARRAY(INTEGER RANGE <>) OF timer_type;
CONSTANT init_timer_value : timer_range;
COMSTART max_timer_value : timer_range;

PR AR AL AL RLR S A RARA R 2 A 2 2R By R R R ERR R T R R R R BRI R R PR R R R YR

-- Declare the states for the voter controller

TYPE vote_state_type IS (vO,vl,v2,v3,v4,v5,vé,v?,v8,v9,v10);

_-QQ..'Qittt'ttt'.'tt’ttttitt't'f"'t'Q"'it'.tt'tiiit't'itii"'ti.it"i
-~ Procedure vote_vid : this procedure takes in the SERP values for a

-- given vid and performs all the voting necessary to produce a

-- voted_serp entry.

~- MOTE : these procedures must be changed for a max_redun_level of

-- less than 4!!

PROCEDURE vote_vid (SIGHAL voted_serp entry : INOUT voted_serp_type;
S8IGNAL vote_values : IR serp_array;
S8IGMAL current_vid : IN vid_type;
S8IGNAL presence : IN presence_type;
obne_unan, ibnf_unan : INOUT BOOLEAN);

A AR AR R R R A R R 2 2 A R R R e R R R R 2 2 2 AR R R Iy

~- Procedure vote_bits : this procedure simply votes a bit_vector and

117

-- returns both the result and a UNANIMOUS flag

PROCEDURR vote_bits (a,b,c,d : IN bit_vector;
SIGHAL presence : IN presence_type;
syndrome : OUT presence_type;
unan : OUT BOOLEAN;
result : INOUT bit_vector):

g 2 X2 2222 EZ XA RZESZSEASESS XSRS R22 222220ttt d Rl

-- Procedure vote_bit : this procedure votes one bit (used for OBNE
-- and IBNF) and returns a UNANIMOUS flag

PROCEDURE vote_bit (a,b,c,d : IN bit;
SIGNAL presence : IN presence_type;
syndrome : OUT presence_type;
unan : OUT BOOLEAN;
result : INOUT bit):;

ey A AR R R R E AR 2R XA 2 2R X222 SRR 2R R Rl d sl sl d

-~ Below are the overloaded convert_to_bits procedures
e A E X R R R R R R A R R X R SRR R AR XS RE AR R RS R R RS sl d]

FUONCTION convert_to_bits (a : IN flow_control_type)
RETURN bit;

FUNCTIOR convert_to_bits (a : IN INTEGER)
RETURN Dbit_ vector;

PROCEDURE convert_to_bits (a,b,c,d : IN flow_ctontrol type;
ba,bb,bc,bd : OUT bit);

PROCEDURE convert_to_bits (a,b,c,d : IN INTEGER;
ba,bb,bc,bd : OUT bit_vector);

PROCEDURE convert_to_bits (a,b,c,d : IN class_type;
ba,bb,bc,bd : OOT bit_vector);

PSR A AR RS SRR AR R R R R A e R R A e SRR RS2 AR R R

-- Below are the overloaded convert_back procedures which convert bits
-- back to abstract types
A A R AR R AL ARl SR AR RE2 R XSRS R 222 Rd XXl

FUNCTION convert_back (a : IN BIT)
RETURN BOOLEAN;

PROCEDURE convert_back (flow_control_bit : IR bit;
S8IGHNAL flow_control : OUT flow_control_type);

PROCEDURE convert_back (bits : IN bit_vector;
SIGNAL int : OUT INTEGER);

PROCEDURE convert_back (bits : IN bit_vector;

S8IGNAL class : OUT class_type);

TYPE power_of_2_array IS ARRAY (NATURAL RARGE <>) OF NATURAL;
CONSTANT power of_ 2 : power of_2 array(0 T0 ?7) := (1,2,4,8,16,32,64,128);

END voter_package;

118

ey 2222222222222 2222222222422 2R 2222t 212222222 X R 2

-=- Voter Package Body

-- This is the body for the voter package

- - o~ - - A - — -~ —

PACKAGE BODY voter_package IS

COWSTANT init_timer_value : timer_range := 0;
CORSTANT max_timer_value : timer range := 2**timer_resolution - 1;

e 2 A2 2222222222222 2222 2222222222222l 2 d 22X 222222 X2

-~ PROCEDURE BODY vote_vid

= Y - - == = = - " = - -

PROCEDURRE vote vid (SIGNAL voted serp_entry : INOUT voted_serp_type;

8IGNAL vote_values : IN serp_array;

SIGHAL current_vid : IR vid_type;

S8IGRAL presence : IN presence_type;

obne_unan, ibnf_unan : INOUT BOOLEAN)
1s

-~ the b_ variables represent the SERP fields transformed into bits

VARIABLE a,b,c,d : serp_type;
VARIABLE ba,bb,bc,bd : bit; ~-- bit values of obne and ibnf
VARIABLE voted_obne,voted_ibnf : bit;

VARIABLE bva,bvb,bvc,bvd : bit_vector (7 DOWNTO 0);
VARIABLE voted_dvid,voted class : bit_vector (7 DOWNTO 0);

VARIABLE dvid_syndrome,class_syndrome,obne_syndrome,ibnf_syndrome
: presence_type;
VARIABLE dvid_unan,class_unan : BOOLEAN := FALSE;

VARIABLE index : INTEGER := O;

BEGIN
index := vote_values'LOW;
a :~ vote_values (index);
b := vote_values(index + 1);
¢ := vote_values(index + 2);
d := vote_values(index + 3);

.
e AR A R R N e R R R R R R R L T I I

~- Vote obne

convert_to_bits (a.obne,b.obne,c.obne,d.obne,ba,bc,bb,bd);

vote_bit (ba,bb.bc,bd,presence.obne_syndrome,obne_unan,
voted_obne);

convert _back (voted_obne,voted_serp_entry.obne);

AL AAARAL S SRS ARl A2l 2y D R Y TR TR A RS A T P T R R R

-- Vote ibnf

convert_to_bits (a.ibnf,b.ibnf,c.ibnf,d.ibnf,ba,bc,bb,bd);

vote_bit (ba,bb,bc,bd, presence, ibnf_syndrome,ibnf_unan,
voted _ibnf);

convert back (voted_ibnf,voted_serp_entry.ibnf);

--..'.""'t'.'i"".'Q.'l"'i""i.""""".'."....I*"i'.'.""It..

-~ Vote destination VID

119

convert_to_bits (a.dest_vid,b.dest_vid,c.dest_vid,d.dest_vid,
bva, bvb,bvc,bvd) ;

vote_bits (bva,bvb, bvc, bvd, presence,dvid_syndrome,dvid_unan,
voted_dvid);

convert_back (voted_dvid, voted_serp_entry.dest_vid);

s A E X IR 222 22 2R 2 2RSSR RS2 22222 R R RRR RS2 2222 R RS2 d R R R

-~ Vote class

convert_to_bits (a.class,b.class,c.class,d.class,
bva, bvb,bvec,bvd) ;

vote_bits (bva,bvb,bvc,bvd,presence,class_syndrome,class_unan,
voted_class);

convert_back (voted_class,voted serp_entry.class);

voted_serp_entry.source_vid <= current_vid;

END;

P A E R 22 22 22822282222 R RSS2 22222222 2 s R s sl RS £

-- PROCEDURE BODY vote_ bits

PROCEDURE vote_bits (a,b,c,d : IN bit_vector;
SIGNAL presence : IN PRESENCE_type:
syndrome : OUT presence_type;
unan : OUT BOOLEAN;
result : INROUT bit vector)

Is

VARIABLE ta,tb,tc,td : bit_vector (a*RANGE) ;

BEGIN
ta := a;
tb := b;
tc = ¢;
td := d;

-- for now, the voter simply returns the last value which isn't masked out
-- this is ok because faults aren't being handled yet

IF presence(0) THEN
result := a;
END IF;

I¥ presence(l) THEN
result := b;
ERD IF:

IF presence(2) TREN
result := c¢;
END IF;

IF presence(3) THER
result := d;

END IF:;
~- result := (ta AND tb AMD tc) OR (ta ARD tc AND td) OR
- (tb AND tc ARD td) OR (ta AND tb AND td) OR"
- (ta AND tb) OR (tb ARD tc) OR (tc AND td) OR

- (ta AND tc) OR (ta AND td) OR (tb AND td) OR
-~ ta OR tb OR tc OR td;

unan := TRUE;

END;

_-".ii'"‘.'.t'tt"'.tl"ii.ttﬁii‘ﬁ't'.t'l’..'""It""i"'ﬁitiit't-'tt

-~ PROCEDURE BODY vote_bit

PROCEDURE vote_bit (a,b,c,d : IN bit;
SIGNAL presence : IN presence_type;
syndrome : OUT presence_type;
unan : OUT BOOLEAN;
result : INOUT bit)

I8

VARIABLE ta,tb,tc,td : bit;
BEGIN

ta := a;

tb := b;

te = c;

td := d;

IF presence(0)} TREN
result := a;
END IF;

IF¥ presence(l) THEN
result := b;
END IF;

IF¥ presence(2) THEN
result := ¢;
END IF;

IF presence(3) THREN
result := d;
END IF;

unan := TRUE;
END;

s 22222 R R A R A 2 R R A R R R R AR SRR AR RS RR R s Rttt R]

-- Below are the PROCEDURE BODIES for the overloaded convert_to_bits

procedures

s A 22222222 2 X R A A R A R R R R R R R R R R IR S RS R RSS2SR s Rl Al

-- convert flow control type to bits

FUNCTION convert_to_bits (a : IN flow_control_type)
RETURN bit IS

BECIN
IFr a THEN
RETURN '1°';
ELSE
RETURN *0°';
END IF;
END;

PROCERDURE convert_to_bits (a,b,c,d : IR flow_control_type;

121

ba,bb,bc,bd : OUT bit)
Is
BEGIN

-- ASSERT (ba'LENGTH = bb'LENGTH = bc'LENGTH = bd'LENGTH)
== REPORT "Yo!! Bit_vectors passed to convert_to_bits not the
~- SEVERITY ERROR;

IF a TRENR
ba := ‘1°*;
ELSE
ba := '0';
END IF;
IF b THENW
bb := '1°';
ELSE
bb := '0';
END IF;
IF c THEN
bc = '1';
ELSE
bc := '0';
END IF:
IF d THEN
bd := '1';
ELSE
bd := 'C*;
ENRD IF:
END;

same length"

EX A AR AR AR AR S R AR R R R R R R R AR R R R R R P R L R S R R R X]

-~ convert subtypes of INTEGER to bits (limited to 8 bit resolution)

FUNCTION convert_to_bits (a : IN INTEGER)
RETURN bit_vector IS

VARIABLE place,ta : INTEGER;

VARIABLE temp : bit_vector(?7 DOWNTO 0);

BEGIN
place := temp'RIGHT:;
ta := a;

FOR i IN temp'RANGE LOOP
IF (ta MOD 2) = 0 THENW
temp(place) :~ '0';

RLSE
temp(place) := '1';
END IF;

ta := ta/2;
place := place + 1;
END LOOP:;

RETURN (temp);
E¥D;

PROCEDURE convert_to_bits (a,b,c,d : IN INTEGER;
ba,bb,bc,bd : OUT bit_vector)

18

VARIABLE place : INTEGER := 0;
VARIABLE ta,tb,tc,td : INTEGER;

BEGIN
-- ASSERT (ba'LENGTH = bb'LENGTH = bc'LENGTH = bd'LENGTH)
-~ REPORT "Yo!! Bit_vectors passed to convert_to_bits not the same length”
t -~ SEVERITY ERROR;

ta =
th =
tec :=
td :=

. .

~

anow

-- The choice of ba is arbitrary since all the bit_vectors must be the same size

place := ba'RIGHT;
FOR i IN ba'RANGE LOOP

IF (ta MOD 2) = 0 THEN
ba(place) := ‘0';
ELSE
ba({place) := '1';
END IF;

— pw—— o oo

IF (tb MOD 2) = O TEHEN
bb(place) := ‘'0';
ELSK
bb (place) := '1';
ERD IF;

IF (tc MOD 2) = 0 THEN
be(place) := 'Q';
ELSE
bc (place) := '1°';
END IF;

IF (td MOD 2) = 0 THEN
bd (place) := '0%;
ELSEK
bd (place) := '1';
END IF;

ta := ta/2;

tb = tb/2;

tc = tc/2;

td := td/2;

place := place + 1;
END LOOP;

END;

FES AR AR A AR A R A R A A e R R R X R R R R R R R R AR A SRS R SRR RS2 2 SRR R RS AR EES

~- convert class_type to bits

PROCEDURE convert_to_bits (a,b,c,d : IN class_type;
ba,bb,bc,bd : OUT bit_vector)
Is

BEGIN

-- ASSERT (ba'LENGTH = Dbb'LENGTH = bc'LENGTH = bd'LENGTH)
-- REPORT "Yo!! Bit_vectors passed to convert_to_bits not the same length"
-~ SEVERITY ERROR;

I¥ a.broadcast THEN
ba(7) = *1°';
ELSE
ba(?) := '0°*;
END IF;

I¥ b.broadcast THEN
bb(7) := *1°*;
ELSE
bb(7) = '0*;
END IF;

I¥ c.broadcast THEN
bec(7) = '1';
ELSE
bc(7) = '0';
END IF;

IF d.broadcast THER
bd(7) = '1°*;
ELSE
bd(7) := 'C';
END IF;

convert_to_bits(a.ex_class,b.ex_class,c.ex_class,d.ex_class,
ba(2 DOWNTO 0),bb(2 DOWNTO 0),bc(2 DOWNTO 0),
bd(2 DOWRTO 0));
convert_to_bits(a.packet,b.packet,c.packet,d.packet,
ba({4 DOWNTO 3),bb(4 DOWNTO 3),bc(4 DOWNTO 3),
bd(4 DOWNTO 3));

-- don't care about the fifth and sixth bits, so don't bother assigning them

END;

.
A A AR AR A RS R R A SRR RS R R R R S R A R R P R R R R E N AR R EETR L R R R R
~-- Below are the PROCEDURE BODIES for the overloaded convert_back

-- procedures

PR A AL AR RS Al R AR AR RS s A2 AR R R R R R R PR R R R S A R PR AR SRS R R

-- convert bit to flow_control_type

FONCTION convert_back (a : IN BIT)
RETURF BOOLEAN IS
BEGIN
IFr a = '1' THEN
RETURN (TRUE) ;

ELSE
RETORN (FALSE) ;
ERD IF;
END;
PROCEDURE convert_back (flow_control_bit : IN bit;
SIGMAL flow_control : OUT flow_control_type)
Is

BEGIN
Iy flow_control bit = '1*' THEN
flow_control <= TRUE;
RLSE
flow_control <= FALSE;
ERD Ir;
E¥D;

. s 2 2 R Y Y R A R R R AL AL XA 222222 222222 2222222222 2

-~ convert bit_vector to integer
o R R T R A A R X R R R R AR A L AR A AR AR AR RSS2 R 2R s 22X X2 2

PROCEDURE convert _back bits : IN bit_vector;
SIGNAL int : OUT INTEGER)
Is
VARIABLE temp : INTEGER := 0;
VARIABLE place : INTEGER := 0Oy
BEGIN
FOR i IR Dbits'REVERSE_RANGE LOOP
IF bits(i) = *'1' THEN
temp := temp + power_of 2i{place);
END IF;
place := place + 1;
END LOOP;
int <= temp;
END;

A AR A AR AR A RS AR A RS R A R R R R A R R R R L R R R RS 22 R RS 2T

-- convert a bit_vector to a class
EA A AR AR AR AR A RS Rl R Rl R R R AR L X AR R 22222 RS2 22

PROCEDURE convert_back (bits : IN bit vector;
S8IGNAL class : OUT class_type)

1s

BEGIN

IF bits(?7) = '1' THEN
class.broadcast <= TRUE;
ELSE
class.broadcast <= FALSE;
END IF;

convert back{bits(2 DOWNTO 0),class.ex_class);
convert _back (bits(4 DOWNTO 3),class.packet);

ERD;

FHD voter_package:

10.6.4. Testbench Package

e 2 222232222 ERZEXE RSN ESSEALS RS R A AR RS R R R AR R RS2SR
-- This package contains subprograms and constants used by the

-~ testbench. Its primary purpose is to abstract away the file reading
-~ and writing from the testbench architecture

LIBRARY score;

USE score.scoreboard_package.ALL;

USE std.textio.ALL;

USE std.std_logic.ALL;

USE std.std_cmos.ALL;

PACKAGE tb_package IS

-- These constants must be the same value as those in “config.h"

CORSTANT bytes _per CT_entry : INTEGER;
CONSTANT bytes_per SERP_entry : INTEGER;
CONSTANRT num_ne : INTEGER;

CONSTANT pe_per_ne : INTEGER;

TYPE int_array IS ARRAY (NATUFAL RANGE <>) OF INTEGER;

-- read_serp_ertry reads one SERP entry from an external file
-- the name of the file is contained in the following declaration,
-- which shoule be modified as needed.

FILE test_data : TEXT IS IN "/usr/usr/ftpp/dennis/score/sbr2.2/test.i";

PROCEDURE get_status (input_file : IN TEXT;
regenerate_ct : OUT BOOLEAN; ’
num_vids : OUT INTEGER;
num_serp_entries : OUT INTEGER;
num_messages : OUT INTEGER);

PROCEDURE get num_serp_entries (input_file : IN TEXT;
num_entries : OUT INTEGER);

PROCEDURE read_serp_entry (input_file : IN TEXT;
serp_entry : OUT serp type);

PROCEDURE get _num_vids (input_file : IN TEXT:
num_vids : OUT INTEGER);

PROCEDURE regenerate_ct (input_file : IN TEXT;
regenerate : OUT BOOLEAN);

PROCEDURE read_ct_entry (input_file : IN TEXT;
ct_entry : OUT ct_type);

PROCEDURE get_msg_length (input_file : IN TEXT;
msg_length : OUT INTEGER);

PROCEDURE read_msg_entry (input_file : IN TEXT:
msg_entry : OUT msg_type);

END tb_package;

‘_ii‘.t'ii,ti'i"i'tﬁ‘ttitit"i*!i"ti'i'ittt'tiitl.i.x 22 22X 2222 X022

-- Testbench Package Body

PACKAGE BODY tb_package IS

-- These constants must be the same value as those in rconfig.h"

CONSTANT bytes_per_ CT_entry : INTEGER := 8;
COMSTANT bytes_per_ SERP_entry ! INTEGER := 4;
CONSTANT num_ne : INTEGER := 5;

COMSTANT pe_per_ne : INTEGER := 8;

-_ii'tﬁ'i'ﬁﬁ‘"ii""itﬁ!ti"ﬁi"*'tlit*'ti.ttt"t.tttit*t.t!ttt."tttti

~- PROCEDURE get_status

-- This PROCEDURE reads the status line of the input file to determine
-- whether to perform a ct_update, and if so how many VID entries to

-- read. It also returns the number of SERP and message entries there
-- ure before the next status line

PROCEDURE get status (input_file : IN TEXT;
regenerate_ct : OUT BOOLEAN;
num_vids : OUT INTEGER;
num_serp _entries : OUT INTEGER;
num_messages : OUT INTEGER)

I8

VARIABLE 1 : line;
VARIABLE good : BOOLEAN;
VARIABLE temp : INTEGER;

BEGIR
readline(input_file,l);
read(l,temp,good);

Ir temp = 0 THEN
regenerate_ct := FALSE;

RLSE
regeneres’ - = TRUE;
EMD IF;
ASSERT o
REPORT *. . >t read number of SERP entries -- HALTING"

S8EVERITY FAL_JRE;

read(l,num_vids,good);

ASSERT good

REPORT "Could not read number of SERP entries -- HALTING"
S8EVERITY FAILURE;

read{l,num_serp_entries,good);

ASSERT good

REPORT "Could not read number of SERP entries -- HALTING"
S8EVERITY FAILURE;

read(l,num_messages, good);
ASSERT good
REPORT "Could not read number of SERP entries -- HALTING®
SEVERITY FAILURE;
END;

e 2R N s Rl R R R A X A S R R AR A RS R RA SRRl Rl R R XY

-- Get_num_serp_entries

-- This PROCEDURE determines how many serp entries should be read from
~-- the input file

PROCEDURE get_num_serp entries (input_file : IN TEXT;
num_entries : OUT INTEGER)
Is
VARIABLE ! : LINE;
VARIABLE good : BOOLEAN:;
BEGIN
readline(input_file,l);
read(l,num_entries,good};
ASSERT good
REPORT "Could not read number of SERP entries -- HALTING"
SEVERITY FAILURE;

END get_num_serp_entries;

B AR Al R 2 Rl 2 R R R R R X R R R R R R R R AR RS R R AR R

-- Read_serp entry

-- This PROCEDURE reads the next serp entry from the input file.

PROCEDURE read_serp_entry (input_file : XN TEXT;
serp_entry : OUT serp_type)
1s
VARIABLE 1 : LINE;
VARIABLE values : int_array(. TO 6);
VARIABLE good : BOCLEAN;
VARIABLE temp : serp_type;
BEGIN
readline(input_file, 1} ;

-- extract out the various fields from the line just read
FOR i IN values'RANGE LOOP

read(l,values(i),good);

ASSERT (good)

REPORT "Problem with serp input file"

SEVERITY failure;
END LOOP;

~- assign values toc the record fields

Ir (values(l) = 0) TEHEN
temp.obne := FALSE;
RLSE
temp.obne := TRUE;
END IF;

IF¥ (valuves(2) = 0) THER
temp.ibnf := FALSE;
ELSE
temp.ibnf := TRUE;
EWD IF;

temp.dest_vid := values(3);
IF (values(4) = 0) THEN

temp.class.broadcast := FALSE;
ELSE

temp.class.broadcast := TRUE;
ASSEIRT FALSE REPORT *“Broadcast message has been read";
ERD 1ITF;

temp.class.packet := values(5);
temp.class.ex_class := values(6);

serp_entry := temp;
END read_serp_entry;

oy 222X 22 IR R R 2 SRR RS RS RS RS RR2 R R sl il st 2]

-- Regenerate_ct
-- This PROCEDURE determines if a new ct must be read in prior to reading
-- another serp.

PROCEDURE regenerate_ct (input_file : I¥ TEXT;
regenerate : OUT BOOLEAN)
IS
VARIABLE 1 : LINKE;
VARIABLE temp : INTEGER;
BEGIN
readline (input_file, 1);
read(1l,temp);
IF temp = 1 THEN

regenerate := TRUE;
ELSE

regenerate := FALSE;
END IF;

END;

A2 22 22222 2 R R R R 2 R R R R E R R R R R R AR RS RS R R R R EEEERREREEEER IR R BRIR E R R R R
-- Get_num_vids

-- This PROCEDURE reads the first entry in the input file to determine
-- how many vids to read in

PROCEDURE get_num_vids (input_file : IN TEXT;
num_vids : OUT INTEGER)
Is
VARIABLE 1 : LINE;
VARIABLE good : BOOLEAN;
BEGIN
readline(input_file,l);
read(l, num_vids, good) ;
ASSERT (good)
REPORT "Problem with CT input file (bad number of vids)*®
SEVERITY failure;
BWD;

EEA A AS SRS AL ARAAR ALl 2l X Ry Y RIS IS R R TR RIS E TR R R
-- Read_ct_entry

-- This PROCEDURE reads the next ct entry from the input file

PROCEDURE read ct_entry (input_file : IN TEXT;

ct_entry : OUT ct_type)
18

VARIABLE 1 : LINE:;
VARIABLE values : int_array (1 TO (max_redun_level + 4));
VARIABLE good : BOOLEAN;

VARIABLE temp : ct_type;
VARIABLE redun : INTEGER;
VARIABLE temp_to : timeout_type;
BEGIN
-- the first part reads in the file entry for a vid
readline(input_£file,);

read(l,temp.vid_number,good);

ASSER? (good)

REPORT "Problem with CT input file (bad VID number)"”
SEVERITY failure;

read(l, redun,good);

ASSERT (good)

REPORT "Problem with CT input file (bad redun)”
SEVERITY failure;

TOR i IN 1 TO (redun + 4) LOOP
read(l,values(i),good);
ASSERT (good)
REPORT "Problem with CT input file (bad mask or pe location)"
SEVERITY failure;
END LOOP;

read(l,temp_to, good);

ASSERT (good)

REPORT "Problem with CT input file (bad timeout value"
SEVERITY failure;

temp.timeout := temp_to;

-- the second part does the decoding and assigning
CASE redun IS

WBEN 1 =>

temp.redun_level := simplex;
WHEN 3 =>

temp.redun_level := triplex;
WHEN 4 =>

temp.redun_level := quad;
WHEN OTHERS =>
ASSERT FALSE
REPORT "Bad redundancy level - assigning default™
SEVERITY FAILURE;
temp.redun_level := simplex;
END CASEK;

-- Change when C simulation has been updated !!!
FJOR i IN 1 TO (num_ne - 1) LOOP
IF¥ values(i) = 1 THEN
temp.presence(i-1) := TRUE;
EL3EK
temp.presence(i-1) := FALSE;
END IF;
END LOOP;
TOR { IN 1 TO redun LOOP
temp.members (i-1) := values(i + max_redun_level);
ERD LOOP;

ct_entry := temp;

END read_ct_entry;

sy 2 22X 22222222 R XA RAR R RS R Rl as iRl Rttt 2R 2
-- Get_msg_length

-- This PROCEDURE gets the number of entries in the msg file

PROCEDURE get msg_length (input_file : IN TEXT;
msg_length : OUT INTEGER)

I8

BIGIN

END;

Y Y 2 22 R R 222222222 22122 R 2 X2 22 A2 22 22 22 2 R R Z R R R R 2R R R RS RN RY

-- Read_msg_entry

-- This PROCEDURE reads an entry in the msg input file

PROCEDURE read_msg_entry (input_file : IN TEXT;
msg_entry : OUT msg_type)

Is

BEGIN

END read_msg_entry;

END tb_package;

131

10.6.5. Main Control Package

~- Main Contrcl Package

-- This package contains types and constants used by the main
~- controller. Its main puprose is to abstract away the state
-- definitions for use with multiple architectures.

LIBRARY score;

USE score.scoreboard_package.ALL;
USE std.std_cmos.ALL;

USE std.std_logic.ALL;

PACKAGE main_control_package IS

PN EAZE 2222 s X 2 R R 2 A R R R R s R A A R R R A R A R AR RS2SR R R

-~ This type is used by the NE to tell the scoreboerd what to do

TYPE operation_type IS (unknown,idle,reset_state,update_ct,
clear_timeouts,process_new_serp,continue);

Nl R R e A R R R e e R s R R R R R R R R S R SRR AR RN

EYN A2 222 2 R 2 R AR 2 R R R S R R R R R R R R R 2 R e 2R A A RN

-~ This type is used by the scoreboard to inform the NE of what its doing

TYPL return_operation_type IS (unknown,idle,busy,reset_complete,
ct_update_complete,clear_complete,
message_to_send,processing_complete);

EEA A AL SRR SRR SRR Al Al SRRl S R s s R SR SRR 2RSSR R 2

ERL AR R AR SRR SRRl RS R R R ARl SR R R e R R R R X R YRS RS RS

-~ The following two TYPES contain states for state machine PROCESSes
-~ within the main controller,

TYPE ptov_state_type IS (s0,sl,s2,s3,s4);

TYPL serp processor_state_type IS (unknown,idle,vote_serp,find_messages,
send_message,processing_complete);

I AR AR A AR SR AR RS R R S RS R R RS R R RS2SR RS2SRRSR 22222 2

END main_control_package;

10.6.6. Voted SERP Package

ey X 2 X E 22122222 SRR RSS2l s Rl i X2 R 2]

-- Voted Serp Package

~- This package contains types, subprograms, and constants used by the
~-- sender and voter-timeout entities.

LIBRARY score;

USE score.s~oreboard_package.ALL;
USE std.std_logic.ALL;

USE std.std_cmos.ALL;

PACKAGE voted_serp package IS

TYPE voted_serp_type IS RECORD

obne, ibnf : flow_control type;
vid_is_simplex : BOOLEAN;
source_vid,dest_vid : vid_type;
class : class_type;
obne_syndrome, ibnf_syndrome, sb_vote_syndrome : presence_type;
END RECORD;

TYPE voted_serp_memory type IS ARRAY (INTEGER RARGE <>) OF
voted_serp_type;

PROCEDURE message_is_legal (VARIABLE vs_entry : INOUT voted_serp_type;
SIGNAL hlf : IN BOOLEAN;
VARIABLE valid : OUT BOOLEAN);

END voted_serp_package;

PACKAGE BODY voted_serp_package IS

PROCEDURE message_is_legal (VARIABLE vs_entry : INOUT voted_serp_type;
SIGNAL hlf : IN BOOLEAN;
VARIABLE valid : OUT BOOLEAN)

18

BEGIN

I¥ vs_entry.vid_is_simplex AND vs_entry.class.broadcast THEN
valid := FALSE;

ELSE
valid := TRUE;

B¥D IF:

END;

END voted _serp_package;

-- Pid_to_vid_package

-- This package contains a few declarations useful to the pid to
-- vid translation table.

LIBRARY score;

USE score.address_package.ALL;
USE score.scoreboard_package.ALL;
USE std.std_cmos.ALL;

USE std.std_logic.ALL;

PACKAGE pid_to_vid_package IS8
CONSTANT table_size : INTEGER := num_ne * pe_per_ne + 2%*max_vid;
-- For now, this type is exactly equivalent to ct_type. However, in the
-- fyture, the members part will be different since it will store an
-- address rather than an encoded locatien.
TYPE pid_tc_vid_entry type IS RECORD

vid : vid_type;
redun_level : redun_level type;

presence : presence_type;
members : members_type; ~- these are really addresses
timeout : timeout type;

ERD RECORD;

TYPE pid_to_vid_table_type IS ARRAY(INTEGER RANGE <>) OF
pid_to_vid_entry type;

-- TYPE vids_in_system is used to keep track of all the vids in the system.
-- The sender uses it to cycle through the voted serp memory looking for messages

TYPE vids_in_system_memory type IS ARRAY (INTEGER RANGE <>) OF address_type;

ERD pid_to_vid_package;

-~ Dual Port Ram Package

-- This package contains types and constants for the dual port ram

-t " — - - — — = > == "

LIBRARY score;

USE score.scoreboard_package.ALL;

OSE std.std_logic.ALL;

PACKAGE dpram package IS
CONSTANT write : t_wlogic;
TYPE serp _memory type IS8 ARRAY (INTEGER RANGE <>) OF serp_type;
TYPE msg_memory_type IS ARRAY (INTEGER RANGE <>) OF msg_type;
TYPE ct_memory_type IS ARRAY (INTEGER RANGE <>) OF ct_type;

END dpram_package;

PACKAGE BODY dpram_package IS
CONSTANT write : t_wlogic := f£0;

EIND dpram_package;

10.6.9. Scoreboard

LIBRARY score;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE score.main_control_package.ALL;
USE score.pid_to_vid_package.ALL;
USE score.voted_serp_package.ALL;
USE score.address_package.ALL;
ENTITY scoreboard IS

PORT

(
message_to_send: OUT BOOLEAN;
operation_out: OUT return_cperation_type;
operation_in: IN operation_type;
hlf: IR BOOLEAN;
ct_data: IN ct_type;
msg_data: OUT msg_type;
read_write: OUT t_wlogic:
clock: IN t_wlogic;
serp_data: IN serp_type;
sb_address: OUT resolved_address

Vi

END scoreboard;
LIBRARY SCORE;

USE std.std_logic.ALL;
ARCHITECTUORE scoreboard OF scoreboard IS

COMPONENT vote_timeout
PORT
t
clock: IN t wlogic;
serp_data: IN serp_type;
voted_serp _data: OUT voted_serp type;

ptov_address: OUT resolved_address := high_z_address;

ptov_rw: OUT t_wlogic;
dpram_rw: OUT t_wlogic;

dpram_address: OUT resolved_address := high_z_address;

ptov_data: IN pid_to_vid entry_type;

start_voting: IN BOOLEAN;

done_voting: OUT BOOLEAN;

num_vids: IN INTEGER;

voted_serp_rw: OUT t wlogic;

clear_done: OUT BOOLEAN;

start_clear: IN BOOLEAN;

voted_serp address: OUT address_type
Ve

ERD CONPONENT:
COMPONENT pid_to_vid
GEWERRIC
(
read_delay: TIME := 10 ns
};
PORT
(

address: IN resolved_address;
ptov_out: OUT pid_to_vid_entry_type;
clock: IN t_wlogic;
read_write: IN t_wlogic := f1;
ptov_in: IR pid_to_vid_entry_ type

HH

END COMPONENT;
) COMPONEN?T vids_in_system
; GERERIC
! (
i read_delay: TIME := 10 ns

PORT

clock: IN t_wlogic;
address: IN resolved_address;
read_write: IN t_wlogic;
data_in: IN address_type;
data_out: OUT address_type

):

END COMPONENT;
COMPONENT address_buffer
PORT
(
input: IN resolved address;
output: OUT resolved_address;
clock: IN t_wlogic;
pass_through: IN BOOLEAN
)i

END CONPONENT;
COMPONENT sender
I PORT

(
. clock: IN t_wlogic;
voted_serp_address: 0O sddress_type;
vs_rw: OUT t _wlogic;
broadcast_pending: OUT BOOLEAN;
dpram_address: OUT resolved_address;
dpram_rw: OUT t_wlogic;
msg_data: OUT msg_type;
voted_serp data: IN voted_serp type;
hlf: IR BOOLEAN;
message_to_send: OUT BOOLEAN;
start_processing: IN BOOLEAN;
done: OUT BOOLEAN;
num_vids: IN INTEGER;
continue: IN BOOLEAN;
ct_update: IN BOOLEAN;
vis_data: IN address_type;
vis_rw: OUT t wlogic;
vis_address: OUT resolved_address;
pass_through: OUT BOOLEAN

e e ———————— - —a— oy —— -

Y

RND COMPONENT;
COMPOWNENT voted_serp_memory
GEMERIC
(
read_delay: TIME := 10 ns
}:
POR?T

port0_in: IN voted_serp_type:
port0_out: OUT voted_serp_type;
port0_address: IN address_type;
portl_address: IN resolved_address;
portl_out: OUT voted_serp_type;
clock: IR t_wlogic;
port0_rw: IN t wlogic;
portl_rw: IN t_wlogic := fl

):

END COMPONENT;
COMPONERT main_controller
PORT

(
dpram_rw: OUT t_wlogic;
ptov_rw: OUT t_wlogic;
dpram_address: OUT resolved_address := high_z_address;
clock: IN t_wlogic;
ct_data_in: IN ct_type;
operation_in: IN operation_type;
operation_out: OUT return_operation_type;
ptov_address: OUT resolved_address := high_z_address;
ptov_data: OUT pid_to_vid_entry_type;
start_voting: OUT BOOLEAN;
num_vids: QUT INTEGER;
start_clear: OUT BOOLEAN;
clear_done: IN BOOLEAN;
done_voting: IN BOOLEAN;
start_sender: OUT BOOLEAN;
sender_done: IN BOOLEAN;
message_to_send: IN BOOLEAN;
continue_processing: OUT BOOLEAN;
ct_update: OUT BOOLEAN;
vis_address: OUT resolved_address;
vis_rw: OUT t_wlogic;
vis_data: OUT address_type

)i

END COMPONENT;

FOR translation_table:pid_to_vid
USE CONFIGURATION SCORE.cpid_to_vid_arch;

FOR vis:vids_in_system
USE CONFIGURATIOR SCORE.cvids_in_system_behavior;

FOR buff:address_buffer
USE CONFIGURATION SCORE.caddress_buffer_behavior;

FOR sender_subsystem:sender
USE COWFIGURATION SCORE.csender_behavior;

FOR voted_serp:voted_serp_memory
USE OPEN;

FOR controller:main_controller
USE COWFIGURATION SCORE.cmain_control_behavior;
S8IGNAL SGNL0O00079: address_type;
SIGNAL SGNLO00078: t_wlogic;
S8ICMAL SGNL0O00077: resolved_address;
SIGMAL SGNL00007S5: BOOLEAN;
S8IGMAL SGNL000072: BOOLEAN;
S8IGWAL SGNLOO0071: BOOLEAN;

SIGRAL
SIGHAL
SIGHAL
SIGNAL
SIGNAL
SIGHAL
SIGNAL
SIGRAL
SIGNAL
SIGNAL
SIGHAL
SIGCNAL
SIGNAL
SIGHNAL
SIGHAL
SIGNAL
SIGNAL
SIGNAL
SIGHNAL

BEXIGIN

SGNL000070: BOOLEAN;
SGNLO00044: BOOLEAN;
SGNL000043: BOOLEAN;
SGNL000042: BOOLEAN;
SGNLO00040: INTEGER;
SGNL000O26: BOOLEAN;
SGNL000018: pid_to_vid_entry_type;
SGNLOQ00012: resolved_address := high_z_address;
ptovrw: t_wlogic;
SGNL000083: t_wlogic := fl;
SGNLO00050: t_wlogic;
SGNL000099: voted_serp_type;
SGNL000084: resolved_address;
SGNL0000S1: address_type;
SGNL000048: voted_serp_type;
SGNL000096: BOOLEAN;
SGNL000098: address_type;
SGNL000032: pid_to_vid_entry_ type;
feedback0: BOOLEAN;

feedback0;

message_to_send <=

voting_subsystem:

PORT

MAP (

vote_timeout

voted_serp_address => SGNL00QOS51,
start_clear => SGNL000042,
clear_done => SGNLOQ0043,
voted_serp_rw => SGNL000O50,

num_vids =>
done_voting

SGNLO00040,
=> SGNL000044,

start_voting => SGNL00GC26,
ptov_data => SGNL000032,
dpram_address => sb_address,

dpram_rw =>

read_write,

ptov_rw => ptovrw,
ptov_address => SGNL000OO12,
voted_serp_data => SGNL000048,
serp_data => serp data,

clock => clock);

translation_table: pid_to_vid

PORT MAP (
ptov_in => SGNL0O0OO18,
read_write => ptovrw,
clock => clock,

vis:

ptov_out =>

address => SGNL0OO00O12

PORT MAP (

data_out =>

SGNLO00032,
)i

vids_in_system

SGRL000098,

data_in => SGNL000079,
read_write => SGNL0O00078,
address => SGNL0O00077,
clock => clock);

buff: address_buffer
PORT MAP (

pass_through => SGNL000096,

clock => clock,

output => SGNLO00CS4,

input => SGNLOCO0098);

sender_subsystem: sender
PORT MAP (

pass_through => SGNLC00096,
vis_address => SGNLO00077,
vis_rw => SGNL000078,
vis_data => SGNL000098,
ct_update => SGNL000O7S,
continue => SGNL000072,
num_vids => SGNLO00040,
done => SGNLO000071,
start_processing => SGNL000070,
message_to_send => feedback0,
hlf => hlf,
voted_serp_data => SGNL0000939,
msg_data => msg_data,
dpram_rw => read_write,
dpram_address => sb_address,
broadcast_pending => OPEN,
vs_rw => SGNLOOOOB3,
voted_serp_address => SGNL000084,
clock => clock);

voted_serp: voted_serp_memory
PORT MAP (

portl_rw => SGNLOOGCB3,
port0_rw => SGNL000050,
clock => clock,
portl_out => SGNL000099,
portl_address => SGNL000084,
port0_address => SGNL0O000S1,
port0_out => OPEN,
port0_in => SGNLO00O48);

controller: main_controller
PORT MAP ¢

vis_data => SGNL0O00079,
vis_rw => SGNL0O00078,
vis_address => SGNL000077,
ct_update => SGNLC0O0075,
continue_processing => SGNL0O00OO72,
message_to_send => feedback0,
sender_done => SGNL0O0O0O71,
start_sender => SGNL000070,
done_voting => SGNL0O00044,
clear_done => SGNL000043,
start_clear => SGNL0O00042,
num _vids => SGNL000040,
start_voting => SGNL000026,
ptov_data => SGNL000018,
ptov_address => SGNL000O12,
operation_out => operation_out,
operation_in => operation_in,
ct_data_in => ct_data,
clock => clock,
dpram_address => sb_address,
ptov_rw => ptovrw,
dpram_rw => read_write);

END scoreboard;

CONFIGCURATION cscoreboard_behav OF scoreboard 18§

140

-

FOR scoreboard

FOR controller : main_controller
USE COMFIGURATION score.cmain_control behavior;
END FYOR;

FOR translation_table : pid_to_vid
USE CORTIGORATION score.cpid to_vid_arch;
END FOR;

FPOR vis : vids_in_system
USR CONFIGURATION score.cvids_in_system_behavior;

END FOR;
FOR voting_subsystem : vote_timeout

USE CONFIGURATION score.cvote_timeout_behav:
END FOR;

FOR voted_serp : voted_serp_memory
USE CONFIGURATION score.cimproved voted_serp_memory;

END FOR;
FOR sender_subsystem : sender

USE CONFIGURATION score.csender_behavior;
END FOR;

FOR buff : address_buffer
USE CONFIGURATION score.caddress_buffer_behavior:
END FOR;
EMD FOR;

END cscoreboard_behav;

141

10.6.10. Dual Port Ram

LIBRARY score;

USE
UsSk
USE

std.std_logic.ALL;
score.scoreboard_package.ALL;
score.dpram_package.ALL;

USE score.active_package.ALL;
USR score.address_package.ALL;
ENTITY dpram IS

GENERRIC
(
read_delay: TIME := 10 ns
)y
PORT
(
clock: IN t_wlogic;
Bct_out: OUT ct_type;
Bserp_out: OUT serp_type;
addressl: IN address_type;
address0O: IN address_type;
Bmsg_in: IN msg_type := def_msg;
Amsg_out: OUT msg_type;
Act_in: IN ct_type;
Aserp_in: IN serp type;
RWl: IN t wlogic;
RWO: IN t_wlogic
)

ENRD dpram:
ARCHITECTORE dpram_behav OF dpram IS
BEGIR

AQO PROCESS (clock, address0, addressl, rw0, rwl)

VARIABLE serp_memory
VARIABLE msg_memory
VARIABLE ct_memory

serp_memory_type
msg_memory_type
ct_memory_type

(mem_base TO

(mem_base TO 3*dpram_size);

(mem_base TO 3*dpram_size);

3*dpram_size);

BOOLEAN :=
0;

VARIABLE ran_process_once FALSE;

VARIABLE vid vid _type :=

BEGIN

This loop simply writes all the VID numbers into the

vid_number field of each CT entry. In the future, this will be

done by resetting the scoreboard.]I do it here to save on simulator
time since this will be done by the time the simulator comes

up.

IF NOT ran_process_once THEN

FOR { IN O TO (max_vid - 1) LOOP
ct_memory{(ct_base + i).vid number := vid;
vid := vid + 1;

EBD LOOP;

ct_memory(ct base + max_vid).vid number
ran_process_once := TRUE;

t= max_vid;

142

END IF;
IF clock = f1 ARD clock'EVENT TEEN

-~ take care of data port 1
I¥ rw0 = write THEN
serp_memory (address0) := Aserp_in;
ct_memory(address0) := Act_in;
BLSE
Amsg_out <= msg_memory(address0) AFTER read_delay;
END IF;

-- take care of data port 2
IF rwl = write THEN
msg_memory (addressl) := Bmsg_in;
ELSE
Bserp_out <= serp_memory(addressl) AFTER read_delay;
Bet_out <= ct_memory(addressl} AFTER read_delay:;
END IF;
R¥D IF;
END PROCRSS;

END dpram_behav;
CONFIGURATION cdpram_behav OF dpram IS
FOR dpram_behav

END FOR;
ERD cdpram_behav;

143

10.6.11. Voted SERP Memory

LIBRARY score;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE score.voted_serp_package.ALL;
USE std.std_cmos.ALL;

USE score.address_package.ALL;
ENTITY voted_serp_memory IS

GENERIC
(
read delay: TIME := 10 ns
);
PORT
(
portl_rw: IN t _wlogic := f1;
port0_rw: IN t_wlogic;
clock: IN t_wlogic;
portl_out: OUT voted_serp_type;
portl_address: IN resolved_address;
port0_address: IN address_type;
portC_out: OUT voted_serp_type;
port0_in: IN voted_serp_ type
)i

END voted_serp_memory;

e s 2 R A e e e e R R R R R RS R 2R R AR R

-- Improved Voted Serp Memory Behavioral Architecture

-- This file contains an improved behavioral architecture of the voted
-- serp memory. It splits the memory operation into two parts, an
~- asynchronous part and a synchronous part.

- e e = - = - ———

ARCHITECTURE improved voted_serp memory OF voted_serp memory IS
SIGNAL asynch_portO_out,asynch_portl out : voted_serp_type;
BEGIN
asynch : PROCESS {(clock,port0_address,portl_address,port0O_rw,portl_rw)

VARIABLE voted_serp_mem :
voted_serp _memory_type (mem_base TO dpram_size);

BEGIN
IF port0O_rw = f0 THEN
voted_serp_mem(port0_address) := portO_in;
ELSE
asynch_port0_out <= voted_serp mem(port0_address);
END IF;
asynch_portl out <= voted_serp mem(portl_address);
END PROCESS;

synch : PROCES8S8(clock)
BEGIN
IF clock = f1 AND clock'EVENT THRN
portl_out <= asynch_portl_out AFTER read_delay;

144

port0_out <= asynch_port0_out AFTER read_delay;
END IF;
ERD PROCESS:

END improved_voted_serp_memory;
CONFIGURATION cimproved voted_serp_memory OF voted_serp_memory
FOR improved_voted_serp_memory

END FOR;
END cimproved_voted_serp memory;

145

Is

10.6.12. PID to VID Table

LIBRARY score;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE score.pid_to_vid_package.ALL;
OSE std.std_cmos.ALL;

USE score.address_package.ALL;
BNTITY pid_to_vid IS

GENERIC
(
read_delay: TIME := 10 ns
):
PORT
(
ptov_in: IN pid_to_vid_entry_type;
read_write: IN t_wlogic := fl;
clock: IN t_wlogic;
ptov_out: OUT pid_to_vid_entry_type;
address: IN resclved_address
)i

ERD pid_to_vid;

-- Pid_to_vid_arch

-~ This is the behavioral architecture for the pid-to-vid translation
-- table. Its basically just a simple memory.

ARCHITECTURE pid_to_vid_arch OF pid_to_vid IS
BEGIN

simple : PROCESS (clock,address,read_write)

-- HMOTE that the table is MUCH larger than it has to be so that the

-- same resolution function can be used for ALL addresses. If the table
-- were smaller, a different high_z_address and resolution function

-- would need to be defined for each address range.

-- This way, when addresses are dropped to bits, no contortions will

~- result from inconsistencies

VARIABLE pid_to_vid_table
pid_to_vid_table_type(mem_base TO dpram_size);

BEGIN
IF¥ clock = f1 AND clock'EVENT THEN
IF read_write = f0 THEN
pid_to_vid_table(address) := ptov_in;
ELSE
ptov_out <= pid_to_vid_table(address) AFTER read_delay;
END 1IF;
EWD IF;

END PROCESS;

END pid_to_vid_arch;

146

CONFIGORATIOR cpid_to_vid_arch OF pid_to_vid
FOR pid_to_vid_arch
END FOR;

END cpid_to_vid_arch;

147

Is

10.6.13. VIDs in System Table

LIBRARY score;

USE std.std_logic.ALL;

OSE score.scoreboard_package.ALL;
USE std.std_cmos.ALL;

USE score.pid_to_vid_package.ALL;
USE score.address_package.ALL;
ENTITY vids_in_system IS

GENERIC
(
read delay: TIME := 10 ns
):
PORT
(
data_out: OUT address_type;
data_in: IN address_type;
read_write: IN t_wlogic;
address: IN resolved_address;
clock: IN t_wlogic
)i

END vids_in_system;

A AR A A2 SRR IR E R R R R R A R E R R R R E R R R R R R R R X R E R E R R R R R R R N R R RS R RS R R RN BT
-- This file contains the ARCHITECTORE for vids_in_system, a lookup

-- table which the sender uses to cycle through the voted_serp memory

-- looking for valid messages.

ARCHITECTORE vids_in_system_behavior OF vids_in_system IS
BEGIN
memory : PROCESS (clock,address,read_write,data_in)

VARIABLE vis_memory
vids_in_system_memory type (mem_base TO dpram_size);

BEGIN
IF clock = f1 AND clock'EVENT THEN
IF read_write = f0 THEN
vis_memory(address) := data_in;
ELSE
data_out <= vis memory(address) AFTER read_delay;
END IF;

END 1IF;
END PROCESS;

END;
COWFIGURATION cvids_in_system_behavior OF vids_in_system IS
FOR vids_in_system_behavior

END FOR;
END cvids_in_system_behavior;

148

10.6.14. Voting and Timeout Hardware

LIBRARY score;
LIBRARY voters;

USRE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE std.std_cmos.ALL;

USE score.pid_to_vid_package.ALL;
USE score.voter_package.ALL;

USE score.voted_serr_package.ALL;
USE score.address_package.ALL;
ENTITY vote_timeout IS

PORT

(
voted_serp_address: OUT address_type;
start_clear: IN BOOLEAN;
clear_done: OUT BOOLEAN:;
voted_serp_rw: OUT t_wlogic;
num_vids: IN INTEGER;
done_voting: OUT BOOLEAN;
start_voting: IN BOOLEAN;
ptov_data: I¥N pid_to_vid_entry_type;
dpram_address: OUT resolved_address := high_z_address;
dpram_rw: OUT t _wlogic;
ptov_rw: OUT t_wlogic;
ptov_address: OUT resolved_address := high_z_address;
voted_serp_data: OUT voted_serp_type;
serp_data: IN serp_type;
clock: IN t_wlogic

Y

EBD vote_timeout;

P 222 X R A R R X e e A R A R R R R RS R 22 R RS R AR SRR Rl a R s

-- Voter and Timeout Behavioral Architecture
-- This architecture conatins the (very) behavioral description of the

-- voting and timeout hardware. This first architecture is composed
-- entirely of process statements which communicate via signals.

ARCEITECTURE vote_timeout_behav OF vote_timeout IS

TYPR temp_state_type I8 (idle,vote,check_timeouts);
SIGRAL temp_state : temp_state_type := idle;

SIGNAL vote_state : vote_state_type:;

-- timer_value holds the value of the timer.

SIGWAL timer_value : timer_range;

-- Declare the signals that will be used to communicate between
-- processes

49

SIGHNAL voted_serp _entry : voted_serp_type;

SIGNAL vote_values : serp_array(0 TO (max_redun_level - 1));
SIGHAL current_vid : vid type;

SIGNAL presence : presence_type;

SIGHNAL timreout_value : timeout_type;

SIGHAL read_obne_timeout,read_ibnf_timeout : t_wlogic;

SIGNAL obne_timeout_address, ibnf_timeout_address : address_type;
S8IGMAL vid is_simplex : BOOLEAN := FALSE;

-~ vote_now tells the voter process to vote the vote_values

8IGNAL vote_vid_now,done_voting vid : BOOLEAN := FALSE;

~-- Declare the signals which exit the voter

SIGHAL voted_obne,voted_ibnf : flow_control_type;
SIGNAL voted_dest vid : vid_type;
SIGNAL voted class : class_type;

BEGIN

A A2 E L 22 2R R R RS RS R SRS AR R R R R R RS2 R R R REE R R RESEEREEEERERE R RY

~=- controller PROCESS : implements the voter sub-controller. It reads in SERP
-- entries using the pid _to _vid table, votes them, checks timeouts, collects
-- the three syndromes, and then ccllects all the voted data into a voted_serp
-- record and writes it into the voted_serp memory.

controller : PROCESS(clock,start_voting)

VARIABLE temp_dpram_address : address_type;
VARIABLE vids_voted : INTEGER := O;

VARIABLE current _ptov_entry : pid_to_vid_entry_type;
-- num_members 1s redun_level converted to a number, used as a loop control index

VARIABLE num_members : INTEGER;

-- current_member is the index into the members array of the current_ptov_entry
VARIABLE current member : INTEGER;

BEGIN
I¥ clock = f1 AND clock'EVENT THEN
CASE vote_state 1S

-- State v0 is the idle ' -ate

WEEN vO =>
done_voting <= FALSE;
ptov_rw <= 20;
dpram_rw <= z0;
dpram_address <= high_z_address;
voted_serp_rw <= 20;
vids_voted := 0;
vote_state <= vO0;
I¥ start_voting THEN
ptov_address <= vids_voted;
ptov_rw <= f1;

dpram_rw <= f1l;
vote_state <= vl;
END IF;

e i X222 222222222222 2222222222222t i il il iRl 2222 R 2

-- States vl to v4 read in the ptov entry and then each SERP entry in

-- the VID
~- Be careful of the array bounds since current member goes from 1 TO 4
‘ -- while members_type goes from 0 TO 3.

-- wailt for the ptov data to appear

WHEN vl =>
vote_state <= v2;

WHEN v2 =>
current_ptov_entry := ptov_data;
current_vid <= current_ptov_entry.vid;

rewes =t

num_members := redun_to_int(current_ptov_entry.redun_levelj;
timeout_value <= current_ptov_entry.timeout;

presence <= current_ptov_entry.presence;

vid_is_simplex <= (current_ptov_entry.redun_level = simplex);
! current_member := 0O;

‘ vote_state <= v3;
}

P AA RS R AR R A AR AR AR s s A R 22 RS S22 2R AR R R R X R R T RN R R R R R

-- These next two states read each SERP entry in the VID into the
-- serp_array
WHEN v3 =>
-- Check to see if redun_level serp entries have been read
IF NOT (current_member = num_members) THEN
-- If not, then go on to read the serp entry from the dpram
temp_dpram_address := serp_base +
current_ptov_entry.members(current_member);
dpram_address <= te--_dpram_address;
vote_state <= v§;
ELSE
-- 1f so, then go on to the voting state
vote_state <= v§;
ENWD IF;
-- wait for the serp data to appear
WHEEN v4§ =>
vote_state <= v5;

~-= v5 simply assigns the serp_data which appears on the data line to vote_values

WEEN v5 =>
vote values(current_member) <= serp_data;

151

current_member := current_member + 1;

vote_state <= v3;

P T 2 2 2 2 2 2212232222222 X2 222 2 A2 2 22 A AR R 2R 222 AR Rt st dls s

-- End section to read in the serp entries

- >~ — " - ——

-

vé tells the voter to vote and increments the vids_voted variable

WHEN v6 =>
vote_vid _now <= TRUE AFTER clock_period/2;

vote_state <= v7;

v7 simply idles while the timeouts are being checked

WHEN v7 =>
I¥ done_voting vid THEN
vote_state <= V8;
ELSE
vote_state <= v7;
END IF;

voting is done, so write the voted serp data into the voted serp memory

WHEN v8 =>
vote_vid_now <= FALSE AFTER clock_period/2;
voted_serp data <= voted_serp entry;
voted_serp_address <= current_ptov_entry.vid;
voted_serp_rw <= fO AFTER clock_period/2;
vids_voted := vids_voted + 1;
vote_state <= v9;

WHEN v9 =>
voted_serp_rw <= f1 AFTER clock_period/2;
vote_state <= v10;

v10 checks to see if all vids have been voted. If so,
voting is done and idles the voter subcontroller

WHEN v10 =>
voted_serp_rw <= f1;
IF vids_voted = num_vids TEEN
done_voting <= TRUE;
vote_state <= vO;
ELSE

assert next ptov table address and start over

ptov_address <= vids_voted;
vote_state <= vl1;
END IF;
EBWD CASE;
EWD IF;

ERD PROCESS;

then it signals that

E A A s A AR R AR RS R R 2R R RS2SRRSR AR R ss R ARl s

-- voter PROCESS : this proces implements the voter. It uses overloaded
-- operators to convert the incoming data to t_wlogic_vectors, votes it
~- (bit for bit majority), and then converts it back to its origina’

-- high-level form.

voter : PROCESS (clock,vote_vid_now)

-~ For simplicities sake, the timeout memories are contalned in this PROCESS
~- This allows faster verificatlion while not sacrificing the readability
-- of the timreout rules

VARIABLE obne_timeout_memory : timeout_memory_type(0 TO max_vid);
VARIABLE ibnf_timeout_memory : timeout_memory_ type(0 TO max_vid);

VARIABLE to_address : address_type;
VARIABLE to_set : BOOLEAN;
VARIABLE diff : timeout_type;

VARIABLE cobne_unan,ibnf_unan : BOOLEAN;

BEGIN
IF clock = f1 AND clock'EVENT THEN
CASE temp_state IS

WHEN idle =>
IF¥ vote_vid_now THEN
temp_state <= vote;
END IF;
done_voting_vid <= FALSE;

WEEN vote =>
vote_vid(voted_serp entry,vote_values,current_vid, presence,
obne_unan,ibnf_unan);
voted_serp_entry.vid is_simplex <= vid_is_simplex;
temp_state <= check_timeouts;
WBEN check_timeouts =>
ey 2 2222 R A X R R R Z R R ER SRR RS EERSSRSRE SRR SRR SRR R E 22X 22 R R RR RN

-- Check obne timeout

to_address := voted_serp_entry.source_vid;
to_set := obne_timeout_memory(to_address).timeout_set;

-- Unanimous? If so, then clear any timeout set on the VID

I¥ obne_unan THBEN
obne_timeout_memory(to_address) .timeout_set := FALSE;

-- Majority? If so, then set a timecut if one hasn't been set or check for
-~ timeout expiration if one has been set

ELSIF voted_serp_entry.obne TREN
IF obne_timeout_memory(to_address).timeout_set THEN

-- Check for timeout expiration
diff := abs(timer_value-obne_timeout_memory(to_address).value);
-- no faults for now

IF (diff > timeout_value) THEN
WOLL;

ELSE
voted_serp_entry.obne <= FALSE;
END IF;

set a timeout

ELSE
obne_timeout memory(to_address).value :=~ timer_value;
obne_timeout_memory{to_address).timeout_set := TRUE;
voted serp_entry.obne <= FALSE;

END IF;
END IF;

End obne timeout check

LAAR A A S SRR RS2 2R A R R R REREE 2R B IR R R R LR PR R RGP PP PP GGG

Check ibnf timeout

to_address := voted_serp_entry.source_vid;
to_set := ibnf_timeout_memory(to_address).timeout_set;

Unanimous? If so, then clear any timeout set on the VID

IF ibnf_unan THEN
ibnf_timeout_memory (to_address).timeout_set := FALSE;

Majority? If so, then set a timecut if one hasn't been set or check for
timeout expiration if one has been set

ELSIF voted_serp_entry.ibnf THER
IF ibnf_timeout_memory(to_address).timeout_set TEEN

Check for timeout expiration
diff := abs(timer_value-ibnf_timeout_memory(to_address).value);
no faults for now

IF (diff > timeout_value) THEN
BULL;
ELSE
voted_serp_entry.ibnf <= FALSE;
END IF;

set a timeout

ELSE
ibnf_timeout_memory(to_address).value := timer_value:
ibnf_timeout_memory(to_address).timeout—set := TRUE;
voted serp_entry.ibnf <= FALSE;

ERD IF;

END IF;

End ibnf timeout check

done_voting_vid <= TRUE AFTER clock_period/2;
temp_state <= idle;
E¥D CASE;
E¥D IF;

END PROCRESS;

e s 222222 22 R R R R R R R A R R R RS A AR A RSS2SR SRRl Rl iRl R

-- obne_timeout_checker PROCESS : implements the obne timeout checker

-- obne_timeout_checker : PROCESS(clock,read_obne_timeout,
- ibnf_timeout_address)

- VARIABLE obne_timeout_memory : timeout_memory type(0 TO max_vid);

-- BEGIN
-~ END PROCEKSS;

pay 222X PR R RS EEER A2 SRR AR AR SRR RSS2 R s 22222 2R i 222 X222 R]

-- ibnf_timeout_checker PROCESS : implements the ibnf timeout checker

-- ibnf_timeout_checker : PROCESS (clock,read_ibnf_timeout,
-- ibnf_timeout_address)

-- VARIABLE ibnf_ timeout_memory : timeout memory_ type(0 TO max_vid);

-- BEGIN
~-- END PROCESS;

e R RN AN T R N R R R N R T R N T AR R AR A A R AT AN T A R AR AN TN T AR R AR AR AR T AN R AT AT RN AN TR

-- timeout_clearer PROCESS : this process clears both the ibnf and obne
-- timeout memories

timeout_clearer : PROCESS(clock,start_clear)
BEGIN
IF clock = f1 AND clock'EVENT THEN
IF start_clear THEN
clear_done <= TRUE;
ELSE
clear_done <= FALSE;
END IF;
END IF;
END PROCESS;

RS AR RS R RS R 2R R S R R R R R R R A A A A R R R R T RS R

-- timer PROCESS : this process implements the timeout timer. It counts
-- 1 to max_timer_value and then wraps around

timer : PROCESS(clock}

VARIABLE temp_timer_value : timer range := O;
BEGIN

IF¥ clock = f1 AND clock'EVENT THEN

IF MOT (temp_timer_value = max_timer_value) TEEN
temp_timer_value := temp_timer_value + 1;

ELSE
temp timer_value := {init_timer_value;
END IF;
timer_value <~ temp_timer_value;
END IF;

EWD PROCESS;

E¥D vote_timeout_behav;

from

-- Provide a default configuration

CONFIGURATION cvote_timeout_behav OF vote timeout IS
FOR vote_timeout_behav
END FOR;

ERD cvote_timeout_behav;

10.6.16. Sender

LIBRARY score;

USE std.std_logic.ALL;

USE std.std_cmos.ALL;

USE score.scoreboard_package.ALL;
USE score.voted_serp_package.ALL;
USE scote.addtess_package.ALL;
ENTITY sender IS

PORT

(
pass_through: OUT BOOLEAN;
vis_address: OUT resolved_address;
vis_rw: OUT t_wlogic;
vis_data: IN address_type;
ct_update: IN BOOLEAN;
continue: IN BOOLEAN;
num_vids: IN INTEGER;
done: OUT BOOLEAN;
start_processing: IN BOOLEAN;
message_to_send: OUT BOOLEAN;
hlf: IN BOOLEAN;
voted_serp data: IN voted_serp_type;
msqg_data: OUT msg_type;
dpram _rw: OUT t_wlogic;
dpram_address: OUT resolved_address;
broadcast_pending: OUT BOOLEAN;
vs_rw: OUT t_wlogic;
voted_serp_address: OUT address_type;
clock: IN t_wlogic

]

END sender;

e i 22 2 R A R R A R R R R S RS R AR R R AR SRA R R RS RS2 R Rl st assds

-- This file contains the behavioral architecture for the sender

-- entity. It's job is to cycle through the voted serp looking

-- for messages to send. When it finds a valid message, it gathers
-- all the information which the NE requires and then informs the

-- NE that a message needs to be sent. After it is sent, the sender
-- continues processing until either another message is found or all
-- voted serp entries have been processed.

-~ MOTE: Broadcasts are not implemented yet.
-- FIXES REQUIRED : clearing of the IBNF bit after a message is sent

- valid message checking (WOLL dest_vid delivery)
- invalid destination VID checking

ARCHITECTURE sender_behavior OF sender IS

TYPE sender_state_type I8 (send0,sendl,send2,send3, sendd,sendS,
sendé, send7, send8) ;

SIGNAL sender_state : sender_state_type;
SIGWAL time_stamper_signal : TIME := 0 ns;

BEGIN

sender_state_machine : PROCESS(clock,start_processing,continue)

-- Where_to_start tells the sender where to begin looking for valid messages

== (its a pointer into the vids_in_system translation table) This ensures

-- fairness because the same VID cannot keep sending a message to the exclusion
-~ of others,

VARIABLE where_to_start : address_type := 0;
VARIABLE temp_vis_address : address_type := 0;
VARIABLE valid message : BOOLEAN := TRUE;

VARIABLE source_entry,dest_entry : voted_serp_type;
VARIABLE message : msg_type;

BEGIN
IF clock = f1 AND clock'EVENT TEEN
CASE sender_state IS

WHEN send0 =>

IF start_processing THEN
temp_vis_address := where_to_start;
vis_address <= temp_vis_address;
vis_rw <= f1;
vs_rw <= f1;
pass_through <= TRUE;
sender_state <= sendl;
done <= FALSE AFTER clock_period/2;

ASSERT FALSE REPORT "Beginning scan for valid messages";
ELSE
done <= FALSE;
pass_through <= FALSE;
dpram_rw <= 20;
vis_rw <= z0;
vs_rw <= 20;
voted_serp_address <= high_z_address;
vis_address <= high_z_address;
dpram_address <= high_z_address;
END IF;

-- sendl is a wait state for the vids_in_system memory

WHEN sendl =>
IF temp_vis_address = num_vids THEN
temp_vis_address := 0;
ELSE

temp_vis_address := temp_vis_address + 1;
END IF;

sender state <= send2;

-- send2 waits for the voted_serp_memory

WHEN send2 =>
sender_state <= send3;

== send3 checks the OBNE of the voted serp entry. If its set, it asserts the
-- address of the destination vid to check its IBNF,

WEEN send3 =>

source_entry := voted_serp_data;
IF source_entry.obne THEN

-- This VID wants to send a message (very badly, I may add), so check the IBNF
-- of the destination VID. Also check for illegal messages.

IF source_entry.vid is_simplex THEN
message_is_legal (source_entry,hlf,valid_message);
ELSE
valid_message := TRUE;
END IF:

I¥ valid _message THEN
pass_through <= FALSE;
voted_serp_address <= source_entry.dest_vid;
vs_rw <= fl;
sender_state <= send4;

ELSE
sender_state <= send8;

EED IF;

ELSE

sender_state <= send8;

END IF;

-- Wait for the data to appear on the data lines

WHEN send4 =>
sender_state <= send5;

WHEN sendS5 =>
dest_entry := voted_serp_data;
IF (dest_entry.ibnf) THEN
-- A valid message exists, so assemble a message data structure and signal the
-- main controller. Also begin a write to the voted serp memory to set
-- the ibnf_processed field to TRUE. This prevents two messages from being
-- sent to the same VID in the same SERP round. (not implemented yet)

sender_state <= send6;
ELSE

sender_state <= sendS8;
END IF;

WHER sendé =>
message.source_vid := source_entry.source_vid;
message.dest_vid := source_entry.dest_vid;
message.class ;= source_entry.class;
message,vote_syndrome := source_entry.sb_vote_syndrome;
message.obne_syndrome := source_entry.obne_syndrome;
message.ibnf_ syndrome := source_entry.ibnf syndrome;
message.timestamp := time_stamper_signal;

-- MOTE : sources and dests fields of msg_type are not implemented yet

msg_data <= message;
dpram_rw <= f0;
dpram_address <= msg_base;
message_to_send <= TRUE;
sender state <= send7;

WHEN send? =>
dpram_rw <= f1l;

message_to_send <= FALSE;
Ir continue THEN
sender_state <= send8;
ELSE
sender_state <= send?;
ERD IF;

-- Check to see if entire voted serp has been processed. If not, then start
-- the cycle again.

WEEN send8 =>
-- Have we processed the entire voted_serp?
I¥ temp_vis_address = where_to_start THEN
-- IF yes, then signal DONE and go to the idle state

I¥ where_to_start = num_vids THER
where_to_start := 0;
RELSE
where_to_start := where_to_start + 1;
END IF;
done <= TRUE AFTER clock_period/2;
sender_state <= send0;

-- If no, then make sure temp vis_address hasn't been incremented one too far,
-- assign the new vis_address and repeat the cycle.

ELSE
vis_address <= temp_vis_address;
voted_serp address <= high_z_address;
vis_rw <= f1};
pass_through <= TRUE;
sender_state <= sendl;
END IF;
END CASE;
END IF;
ERD PROCESS;

time_stamper_signal <= (time_stamper_signal + clock_period) WEEN
(clock = f1 AND clock'EVENT) ELSE t !_stampez_signal;

END sender_behavior;

CONFIGURATION csender_behavior OF sender IS
FOR sender_bhehavior
E¥MD FOR;

B¥D csender_behavior;

10.6.16. Main Controller

LIBRARY score;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE score .main_control_package.ALL;
USE std.std_cmos.ALL;

USE score.active_package.ALL;

USE score.pid_to_vid_package.ALL;
USE score.address_package.ALL;
ENTITY main_controller IS

PORT

(
vis_data: OUT address_type;
vis_rw: OUT t_wlogic;
vis_address: ODT resolved_address;
ct_update: OUT BOOLEAN;
continue_processing: OUT BOOLEAN;
message_to_send: IN BOOLEAN;
sender_done: IN BOOLEAN;
start_sender: OUT BOOLEAN;
done_voting: IN BOOLEAN;
clear_done: IR BOOLEAN;
start_clear: OUT BOOLEAN:
num_vids: OUT INTEGER;
start_voting: OUT BOOLEAN;
ptov_data: OUT pid to_vid_entry_type;
ptov_address: OUT resolved_address := high_z_address;
operation_out: OUT return_operation_type;
operation_in: IR operation_type;
ct_data_in: IN ct_type;
clock: IN t_wlogic;
dpram_address: OUT resolved_address := high_z_address;
ptov_rw: OUT t_wlogic;
dpram_rw: OUT t wlogic

):

END main_controller;

Al Al 2l 2SR AR R R R R 2 a2 R R 2 AR S22 22222 R 22 X222 X222 RaRARalald sl

~-- Main Controller Behavioral Architecture

ARCEITECTURE main_control_behavior OF main_controller IS

8IGWNAL ptov_state : ptov_state_type := s0;

S8IGMAL serp_processor_state : serp_processor_state_type := unknown;
SICWAL start_ct_update,ct_update_done : BOOLEAN := FALSE;

BIGWAL start_processing,done_processing : BOOLEAN := FALSE;

BEGINW

ASSERT NOT (operation_in = unknown)

REPORT "port OPERATION in main_controller in unknown state"
SEVERITY ERROR;

~-- The ct_update port is used to inform the sender to reset its

161

-- where_to_start variable. If it didn't, it might end up pointing
-- to a vid which no longer exists

ct_update <= start_ct_update;

-- This process simply serves as a dispatcher. The variable

-- temp_operation is used to dispatch in order to prevent two
-- operations to be pending simultaneously. This could occur if
-- dispatching was done off of the operation port itself,

main_state_machine : PROCESS (clock,operation_in)
VARIABLE temp_operation : operation_type := unknown;

-- op_out is used to read the value of tl..e operation out signal. A
-- BUFFER port should be used, but they aren't supported yet

VARIABLE op_out : return_operation_type := idle;

BEGIN
IF clock = f1 AND clock'EVENT TREN
CASE temp_operation IS
-- provide a kick start out of unknown
WEER unknown =>
temp_operation := operation_in;
operation_out <= unknown;
op_out := unknown;

WBEN idle =>

temp_operation := operation_in;
operation_out <= idle;

op_out := idle;

-~ For now, a reset is defined as updating the CT and clearing all

-- timeocuts. This is to avoid multiple drivers. In the future, a reset
-~ must also copy all the vid numbers into the first byte of each

-~ CT entry

WHEN reset_state =>

IF NOT ct_update_done THEN
-- The second IF is necessary to avoid continually performaing a ct_update
-- start_ct_update must be made FALSE at some point before ct_update_done
-- becomes TRUE

Ir¥ WOT (op_out = busy) THREN
start_ct_update <= TRUE;
ELSE
start_ct_update <= FALSE;
END IF;

operation_out <= busy;
op_out := busy;
ELSIF WOT clear_done THEN

-- temporary, remove when timeouts implemented

start_clear <= TRUE;

ELSE
temp_operation := operation_in;
operation_out <= reset_complete;
op_out := reset complete;

|

start_clear <= FALSE;
E¥D IF;

WHEN update_ct =>
IF MOT ct_update_done THENW
Ir MOT (op_out = busy) THEN
start_ct_update <= TRUE;
ELSE
start_ct_update <= FALSE;
END 1IF;

operation_out <= busy;
op_out := busy;

ELSE
temp_operation := operation_in;
operation_out <= ct_update_complete;
op_out := ct_update_complete;

END IF;

WHRN clear_timeouts =>

IF¥ WOT clear_done TEHEERN
start_clear <= TRUE;
operation_out <= busy;
op_out := busy;

ELSE
femp_operation := operation_in;
operation_out <= clear_complete;
op_out := clear_complete;
start_clear <= FALSE;

EWD 1IF;

WHEN process_new_serp =>
IF WOT done_processing THEN
-~ The second IF statement prevents the start_processing signal from
-- remaining TRUE for too long
IF op_out = busy TREN
start_processing <= FALSE AFTER clock_period/2;
ELSE
start_processing <= TRUE AFTER clock_period/2;
END IF;
oparation_out <= busy;
Op_out := busy:
ELSE
temp_operation := operation_in;
op_out := processing_complete;
operation_out <= op_out;
END IFr;

WHEM continue =>
temp operation := operation_in;
operation_out <= busy;
op_out := busy:;
EWD CASE;
EXD IF;

END PROCESS;
e Rl R R R L I I I T

~~ This state machine implements the pid_to_vid translation table
-- generator

163

ptov_state_machine : PROCESS (clock,start_ct_update)

VARIABLE pid_to_vid_entry : pid_to_vid_entry type;
VARIABLE ct_address : address_type := ct_base;
VARIABLE vids_in_system : INTEGER := 0;

BEGIN
IF clock = f1 AND clock'EVENT THEN
CASE ptov_state IS

-- s0 is the idle state

WHER sO =>
I¥ start_ct_update THEN
ptov_state <= sl;
ct_update_done <= FALSE;
ELSE
ptov_state <= s0;
dpram_address <= high_2_address;
ptov_address <= high_z_address;
vis_address <= high_z_address;
vis_rw <= 20;
ptov_rw <= 20;
dpram_rw <= z0;
END IF;
-- sl asserts the ptov address and the ct_address into the dpram
WHEN sl =>
ptov_address <= vids_in_system;
dpram_address <= ct_address;
ptov_rw <= f1l;
dpram_rw <= f1;
ct address := ct_address + 1;
ptov_state <= s§2;

-- 82 is a wait state

WHEN s2 =>
ptov_state <= s3;

R I R R R R R R e P R R Y R R A R R E R YRS SRR RS RSA R SRR R A S R 2 0 AR R 24

-~ 83 reads the ct entry at the address asserted by sl. If the redun level is
-- zero it skips to the next ct entry. Otherwise it constructs a pid_to_vid
-- table entry and writes it intc the table. It alsoc checks to see if its

-~ reached the end of the ct. If so, it asserts ct_update_done, tri-states

-- the dpram address line, and goes to the idle statea(s0)
e 222 XE AT EZAZER R PR R E RS EERE RN EEET ST ISR AR RS RAXE AE SRR AR 8 2 2 4

WREN 33 =>
IF WOT(ct_data_in.redun_level = zero) TEEN

-- Found a new vid, so increment the counter
vis_address <= vids_in_system;
vis_data <= ct_data_in.vid_number;
vids_in_system :~ vids_in_system + 1;
pid_to_vid_entry.vid := ct_data_in.vid_number;

pld_to_vid_entry.redun_level:= ct_data_in.redun_level;
pid_to_vid_entry.presence := ct_data_in.presence;

164

pid_to_vid_entry.members := ct_data_in.members;
pid_to_vid_entry.timeout := ct_data_in.timeout;

ptov_data <= pid_to_vid entry;
~- Wait for a falling edge to assert the write signal

ptov_rw <= f0 AFTER clock_period/2;
vis_rw <= f0 AFTER clock_period/2;
ptov_state <= s4;

ELSE

-- else go to next ct entry

ptov_state <= sl;
ERD IF;

I¥ ct_data_in.vid_number = max_vid TREN
ASSERT FALSE REPORT "Done with translation table”;
ptov_state <= s0;
ct_update_done <= TRUE;

~- this is a slight optimization to only assign a value to this port (num_vids)
~- once instead of over and over again

num_vids <= vids_in_system;

END IF;

~-- state s4 simply gives enough time for the write signal to be taken

WHER sq4 =>

ptov_rw <= fl1 AFTER clock_period/2;
vis_rw <= f1 AFTER clock_period/2;
ptov_state <= sl;

-- Appease the syntax deity by including this clause

WRER OTEERS =>
ASSERT FALSE REPORT "Unimplemented state in ct_update controller™;
ptov_state <= s0;
END CASEK;
END IF;
END PROCRSS;

R AAAL A LRSS AL SRR AR AR RR Rl R X R Ry R R R R R R R X X R

-- This process takes care of all the control signals involved in
-- processing the SERP

serp_processor : PROCES8S (clock,start_processing,done_voting,
sender_done,message_to_send)

BEGCIN
IF clock = f1 AND clock'EVENT TEEN
CASE serp_processor_state IS

WHER unknown =>
Serp_prucessor_state <= idle;

WERR idle =>
done_processing <= FALSE;

165

IF start_processing THEN
start_voting <= TRUE;
serp_processor_state <= vote_serp;

ELSE
start_voting <= FALSE;
start_sender <= FALSE;

END IF;

WHEN vote_serp =>
start_voting <= FALSE;
I¥ done_voting TEEN
start_sender <= TRUE;
serp_processor_state <= find messages;
ASSERT FALSE REPORT "SERP Voting Done";
END IF;

WHEN find_messages =>
start_sender <= FALSE;
continue_processing <= FALSE;
IF message_to_send THEN
serp_processor_state <= send_message;

ELSIF sender_done THER
serp _processor_state <= processing_complete;
END IF;

WHEN send message =>
IF operation_in = continue THEN
ASSERT FALSE REPORT "Sent a message";
continue_processing <= TRUE;
serp_processor_state <= find messages;
ELSE
serp_processor_state <= send_message;
END IF;

WHEN processing complete =>
done_processing <= TRUE AFTER clock_period/2;
serp_processor_state <= idle;
ASSERT FALSE REPORT "Processing is complete”;

END CASE;
END IF;
END PROCESS;

END main_control_behavior;

CONFIGURATION cmain_control behavior OF main_controller IS
FOR main_control_behavior
ERD FOR;

END cmain_control_behavior;

10.6.17. Address Buffer

LIBRARY score;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE score.address_package.ALL;
ENTITY address_buffer IS

PORT
(
pass_through: IN BOOLEAN;
clock: IR t_wlogic;
output: OUT resolved _address;
input: IN resolved_address
):

ERD address_buffer;

st 2 XZEXEZRARSZEEZEZERZXE RS ZSRER 2RSSR sl ARl Rl R dnl Al

-- This component simply acts as a buffer to turn an address line on
-- and off (tri_state);

ARCBITECTURE address_buffer behavior OF address_buffer IS
BEGIN

output <= input WREN pass_through ELSE
high_z_address;

END address_buffer behavior;
CONFIGURATION caddress_buffer_behavior OF address_buffer IS
FOR address_buffer_behavior

END FOR;
END caddress_buffer behavior;

167

10.6.18. Scoreboard Subsystem

LIBRARY score;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE score.address_package.ALL;

USE score.main_control_package.ALL;
ENTITY sb_subsystem IS

PORT

§
message_to_send: OUT BOOLEAN;
hlf: IN BOOLEAN;
operation_out: OUT return_operation_type;
operation_in: IN operation_type;
msg_data_out: OUT msg_type;
read write: IN t_wlogic;
done: OUT t_wlogic;
ct_data_in: IN ct_type;
serp_data_in: IN serp_type;
address: IN address_type;
clock: IN t_wlogic

)2

END sb_subsystem;
LIBRARY SCORE;

USE std.std_logic.ALL;
ARCBITECTURE sb_subsystem OF sb_subsystem IS

COMPONENT scoreboard
PORT

(
sb_address: OUT resolved_address;
serp data: IN serp_type;
clock: IN t_wlogic;
read_write: OUT t_wlogic;
msg_data: OUT msg_type;
ct_data: IN ct_type;
hlf: IN BOOLEAN;
operation_in: IN operation_type;
operation_out: OUT return_operation_type;
message_to_send: OUT BOOLEAN

)i

END COMPONENT;
COMPUNENT dpram
GEMERIC
(
read_delay: TIME := 10 ns

)
PORT
(

RWO: IN t_wlogic;

RWl: IN t wlogic;

Aserp in: IN serp_type;

Act_in: IN ct_type;

Amsg _out: OUT msg_type;
Bmsg_in: IN msg_type := def_msg;

address0: IN address_type;
addressl: IN address_type;
Bserp_out: OUT serp_type;
Bct_out: OUT ct_type;
clock: IN t_wlogic

|

END COMPONENT;

FOR behav_sb:scoreboard
USE CONTIGURATION SCORE.cscoreboard_behav;

FOR dp_ram:dpram
USRE CORFPIGURATION SCORE.cdpram_behav;
S8IGHAL sb_ct: ct_type;
SIGNAL sb serp: serp_type;
SIGHNAL sb_address: address_type;
SIGNAL sb_rw: t_wlogic:

BEGIN

behav_sb: scorszboard
PORT MAP (

message_to_send => message_to_send,
coeration_out => operation_out,
operation_in => operation_in,
hlf => hlf,
ct_data => sb_ct,
msg_data => msg_data_out,
read_write => sb_rw,
clock => clock,
serp_data => sb_serp,
sb_address => sb_address);

dp_ram: dpram
PORT MAP (

clock => clock,
Bet_out => sb_ct,
Bserp_out => sb_serp,
addressl => sb_address,
address0 => address,
Bmsg_in => OPEN,
Amsg_out => OPEN,
Act_in => ct_data_in,
Aserp_in => serp_data_in,
RW1 => sb rw,
RWO => read_write);

END sb_subsystem;

-- Buhavioral Scoreboard Subsystem Configuration

-- This is the configuration for the top-level scoreboard subsystem

CONFIGURATION csb_behav_subsystem OF sb_subsystem IS
FOR sb_subsystem
FOR dp_ram:dpram

USE CONFIGURATION score.cdpram_behav;
EWD FOR;

169

FOR behav_sb:scoreboard
USE CONFIGURATION score.cscoreboard_behav;
END FOR;

END TOR;
END csb_behav_subsystem;

CONFIGURATION csb_behav_tb OF sb_testbench 1S
FOR sb_behav_tb
FOR sbs : sb_subsystem
USE CONFIGURATION score.csb_behav_subsystem;
ERD FOR;
END FOR;
EXD csb_behav_tb;

170

10.6.19, Testbench

LIBRARY score;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE score.tb_package.ALL;

USE score.dpram_package.ALL;

USE std.std_cmos.ALL;

USE score.active_package.ALL;

USE score.main_control_package.ALL;
USE score.address_package.ALL;
ENTITY sb_testbench IS

END sb_testbench;

P S XS R R 22 R R Rl dl iRl ls iR X YRR SRR A AR YRS 2R RS RS R R R

~- Scoreboard Behavioral Testbench

~- This architecture constains code to test the highly behavioral

~- version of the scoreboard model

~- I have liberally used ASSERT statements throughout the design as
~- "signposts" to when critical actions have occurred. They allow easy
-~ zooming to different areas inside of results display

ARCHITECTURE sb_behav_tb OF sb _testbench IS

COMPONENT sb_subsystem
PORT

(
message_to_send: OUT BOOLEAN;
hlf: IN BOOLEAN;
operation_out: OUT return_operation_type;
operation_in: IN operation_type;
msg_data_out: OUT msg_type;
read_write: IN t wlogic;
done: OUT t_wlogic;
ct_data_in: IN ct_type;
serp_data_in: IN serp_type;
address: IN address_type;
clock: IN t_wlogic

)i

END COMPONENT;

S8IGNAL read write : t_wlogic := f1;

8XGHMAL operation_in : operation_type := unknown;

SIGNAL operation _out : return_operation type := unknown;
SIGNAL hlf : BOOLEAN := TRUE; -

8IGHNAL message_to_send : BOOLEAN;

SIGNAL clock : t_wlogic := clk_active;

8IGWAL done : t_wlogic := f£0;

S8IGWAL serp _data_in : serp_type;
BIGNAL ct_data_in : ct_type;
8IGNAL msg_data_out : msg_type;
S8IGNAL address : address_type;

BEGCIN

1M

sbs sb_subsystem
PORT MAP (

message_to_send => message_to_send,

hlf => hlf,

operation_in => operation_in,
operation_out => operation_out,
msg_data_out => msg_data_out,
read_write => read_write,
ct_data_in => ct_data_in,
serp_data_in => serp_data_in,

address => address,

done => done,

clock => clock);
driver PROCESS

.

-- declare temporary variables to hold signal values before assignment
-~ 't*' in front means temporary
VARIABLE tsd : serp_memory type (0 TO dpram_size);
VARIABLE tmsg : msg_memory type (0 TO dpram_size):
VARIABLE tct ct_memory_type (0 TO dpram_size);
VARIABLE taddress address_type;
VARIABLE do_ct_update BOOLEAN := FALSE;
VARIABLE num_vids : INTEGER := 0;
VARIABLE num_serp_entries INTEGER := O;
VARIABLE num_messages,cnum_messages INTEGER := 0;
BEGIN
-- read in the ct
-~ num_vids is the number of vids to read into the simulation

process 4 SERPs

FOR i IN 1 TO 4 LOOP

get _status(test_data,do_ct_update,num_vids,num_serp_entries,

cnum_messages);
IF do_ct_update THEN
FOR i IN 0 TO (num_

vids 1) LooOP

read_ct_entry(test_data,tct(i));

END LOOP;

write the ct into memory

FOR i IN O TO
WAIT OUNTIL clock

(num_vids - 1)

and perform a reset

LOOP
fO AND clock'EVENT;

address <= ct_base + tct(i).vid_number;
ct_data_in <= tct(i);

read_write <= f0;
END LOOP;

WAIT ONTIL clock
read write <= f1;

must WAIT so that the last ct entry is writen into the dpram

fO AWD clock'EVENT;

operation_in <= reset_state;

ASSERT FALSE REPORT

"Beginning Initial Reset"™;

172

WAIT FOR clock_period;
operation_in <= jdle;

WAIT UNTIL operation_out = reset_complete
AWD clock = f1 AND clock'EVENT;
ASSERT FALSE REPORT “Initial Reset Complete™;
END IF;

-~ read in the first SERP

FOR i IN 0 TO0 (num_serp_entries - 1) LOOP
read_serp_entry(test_data,tsd(i));
END LOOP;

-~ write the first SERP into memory and begin processing it

FOR serp_loc IN 0 20 (num_serp_entries - 1) LOOP
WAIT UNMTIL clock = f0 AND clock'EVENT;
address <= serp base + serp_loc;
serp_data_in <= tsd(serp_loc);
read_write <= f0;
END LOOP;
WAIT UNTIL clock = fO AND clock'EVENT;

read_write <= f1;

operation_in <= process_new_serp;

ASSERT FALSE REPORT "Processing First SERP";
WAIT FOR clock_period;

cperation_in <= lidle;

WHEILE ROT (operation_out = processing_complete) LOOP
IF message_to_send TEEN
num_messages := num_messages + 1;
operation_in <= continue AFTER clock_period/2;
WAXIT ONTIL clock = f1 AND clock'EVENT;
ELSE
operation_in <= idle AFTER clock_period/2;
WAIT UNTIL clock = fl1 AND clock'EVENT;
END IF;
IF operation_out = processing_complete THEN
EXIT;
END IF;
END LOOP;
END LOOP;

WAIT;
END PROCESS;

clock_driver : PROCESS
BEGIN

clock <= MOT clock:

WAIT FOR clock_period/2;
END PROCESS;

END sb_behav_tb;

173

10.7. Structural VHDL for theVoting and Timeout Hardware

This appendix contains the VHDL source code for the uncompleted structural
architecture of the voting and timeout hardware.

10.7.1. Voting and Timeout Hardware

LIBRARY score;
LIBRARY voters;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE std.std_cmos.ALL;

USE score.pid_to_vid_package.ALL;
USE score.voter_package.ALL;

USE score.voted_serp_package.ALL;
USE score.address_package.ALL;
ENTITY vote_timeout IS

PORT

(
voted_serp_address: OUT address_type;
start_clear: IN BOOLEAN;
clear_done: OUT BOOLEAN;
voted_serp rw: ODT t wlogic;
num_vids: IN INTEGER;
done_voting: OUT BOOLEAN;
start_voting: IN BOOLEAN;
ptov_data: IN pid_to_vid_entry type;
dpram_address: OUT resolved_address := high_z_address;
dpram_rw: OUT t_wlogic;
ptov_rw: OUT t _wlogic;
ptov_address: OOT resolved_address := high_z_address;
voted_serp_data: OUT voted_serp_type;
serp_data: IN serp_type;
clock: IN t_wlogic

)i

EMD vote_timeout;

ey 2R R AR R R R R A R R R AR RSS2 R AR RRES RS RS RER AR XS R Rl l R R Rl ARl RS

-- Voter and Timeout Structural Architecture

-~ This ARCEBITECTURE contains the structural implementation of the
-- voting and timeout subsection. Actually, its also partly dataflow.

ARCEITECTORE vote timeout_struct OF vote_timeout IS
COMSTANT control delay : TIME := clock_period/4;

CONSTANT obne bit_pos : INTEGER := 7;
CONSTANT ibnf bit_pos : INTEGER := 6;

-- In this next TYPE, "rse" stands for “read SERP entry”™ and "v" stands
== for "vote".

TYPE struct_vote_state_type IS (rse0,rsel,rse2,rsel, rse4,rse5,v0,
vi,v2,v3,v4,v5,v6,v2,vB,v9,v10);

174

SIGHAL vote_state : struct_vote_state_type;

-- The following signals are repositories for intermediate data

SIGNAL voted_data : BIT_VECTOR(7 DOWNTO 0);
SIGNAL unan : BIT_VECTOR(? DOWNTO 0);

SIGNAL a_syndrome : BIT_VECTOR(7 DOWNTO
SIGNAL b_syndrome : BIT_VECTOR(7 DOWNTO
SIGMAL c_syndrome : BIT_VECTOR(? DOWNTO
SIGEAL d_syndrome : BIT_VECTOR(7 DOWNTO
S8IGMAL overall vote_syndrome : presence_type;

0
0
0
0

S e we w

)
)
)
)

SIGNAL voted_serp entry : voted_serp_type;
SIGNAL voted obne,voted_ibnf : flow_control_type;
S8IGNAL voted_dest_vid : vid _type;

SIGHAL voted_class : class_type;

SIGHAL start_to_check,check_done : BOOLEAN;

SIGHNAL obne_syndrome, ibnf_syndrome : presence_type;
S8IGNAL clear_obne,clear_ibnf : BOOLEAN := FALSE;
SIGNAL current_timer_value : timer_range’

-~ These signals are "registers" for holding information

SIGNAL source_vid : vid_type;

SIGNAL presence : presence_type;
SIGNAL redun_level : redun_level type;
SIGHNAL timeout_value : timeout_type;
S8IGNAL vid_is_simplex : BOOLEAN;
SIGNAL is_flow_control : BIT;

-- The following signals are used mainly by the controller. In this
-~ ARCHITECTURE the controller is not a separate component., It seems
-~ easier to debug, but it's slower to compile (where's my SPARC2, eh?).

TYPE bv_array IS ARRAY (NATURAL RANGE <>} OF BIT_VECTOR(7 DOWNTO 0):

S8IGNAL vote_values : serp_array (0 TO (max_redun_level - 1));
SIGNAL bit_vote_values : bv_array (0 TO (max_raedun_level - 1))

-- These signals will become ports when I get around to it

BIGWAL load_timer : t_wlogic := f1;
S8IGNAL new_timer value : timer_range;

-- Here are the components used in the architecture

COMPONENT voting subsystem

GENERIC
(
voter_delay: TIME := 1 ns;
unan_delay: TIME := 1 ns;
syndrome_delay: TIME := 1 ns
):
PORT
(

1

is_flow_control: IN BIT;

presence : IN presence_type;
redun_level: IN redun_level type;
unan: OUT BIT VECTOR(7 DOWNTO 0);
vote_result: OUT BIT_VECTOR(7 DOWNTO 0);
d: IN BIT_VECTOR(7 DOWNTO 0);
c: IN BIT_VECTOR(?7 DOWNTO 0);
b: IN BIT_VECTOR(7 DOWNTO 0);
a: IN BIT_VECTOR(7 DOWNTO 0);
d_syndrome: OUT BIT_VECTOR(7 DOWNTO 0);
c_syndrome: OUT BIT_VECTOR(7 DOWNTO 0);
b_syndrome: OUT BIT_VECTOR(7 DOWNTO O0);
a_syndrome: OUT BIT_VECTOR(7 DOWNTO 0)

)i

END CONPONENT;
COMPONENT timeout_subsystem

GENERIC

(
do_CMTO: BOOLEAN := FALSE

):

PORT

(
vid_is_simplex: IN BOOLEAN;
clear_timeouts: IN BOOLEAN;
check_done: OUT BOOLEAN;
ct_to_value: IN timeout_type;
timer_value: OUT timer_range;
load_timer: IN t_wlogic;
new_timer_value: IN timer_range;
ibnf_unan: IN BOOLEAN;
ipnf: IN flow_control_type;
ibnf_syndrome_out: OUT presence_type;
clear_ibnf: OUT BOOLEAN;
start_to_check: IN BOOLEAN; :
obne_syndrome_out: OUT presence_type;
obne_unan: IN BOOLEAN;
clear_obne: OUT BOOLEAN;
obne: IN flow _control_type;
source_vid: IN vid_type;
clock: IN t_wlogic

):

»

END COMPONENT;

BEGIN

N A A R AN AN N R R A S NN P P AP S R R R N A AR P P RN RS RN PR RN N AR AN TR NN AR F W

-- controller PROCESS : implements the voter sub-controller. It reads in
-- SERP =2ntries using the pid_to_vid_table, sends them to the voter,

-- collects the syndromes, and writes the voted results to the voted

-- SERP memi.,.

- " - - - -

controller : PROCESS8(clock,start_voting)

VARIABLE temp_dpram_address : address_type;
VARIABLE vids_voted : INTEGER := 0;

VARIABLE current_ptov_entry : pid_to_vid_entry_type;

-- num_members is redun_level converted to a number, used as a loop control index

176

VARIABLE num_members : INTEGER;

-- current_member is the index into the members array of the current_ptov_entry
VARIABLE current_member : INTEGER;

BEGIN
IF clock = f1 AND clock'EVENT THEN

CASE vote_state IS

-- State rse0 is the idle state
WBEN rsel =>

done_voting <= FALSE;

ptov_rw <= z0;

dpram_rw <= 20;

dpram_address <= high_z_address;

voted_serp rw <= 20;

vids_voted := O;

vote_state <= rse(;

IF start_voting THEN
ptov_address <= vids_voted;
ptov_rw <= f1;
dpram_rw <= fl;
vote_state <= rsel;

END IF;

ey X 22222 2R R R R X R R R R R R R S R R R R R R R A R A R e R 22 R R SRR R

-- States rsel to rse4 read in the ptov entry and then each SERP entry in
~- the VID

-- Be careful of the array bounds since current_member goes from 1 T0 4
-- while members_type goes from C TO 3.

-- wait for the ptov data to appear

WREN rsel =>
vote_state <= rse2;

WHEN rse2 =>
current_ptov_entry := ptov_data;
source_vid <= current_ptov_entry.vid;

num_members := redun_to_int (current_ptov_entry.redun_level);
timeout _value <= current_ptov_entry.timeout;

presence <= current_ptov_entry.presence;

vid is_simplex <= (current_ptov_entry.redun_level = simplex);
current member := 0;

vote_state <= rse3;

AR AR AAR S LA RS AR R AR 22 R R Y PR R Y R P R R R R AL RS A A2 2R X2]

-~ These next two states read each SERP entry in the VID into the
-- serp_array

WHEN rse3 =>
-- Check to see if redun_level serp entries have been read

IF WOT (current_member = num_members) TEEN

177

-- If not, then go on to read the serp entry from the dpram

temp_dpram_address := serp_base +
current_ptov_entry.members (current_member);
dpram_address <= temp_dpram_address;
vote_state <= rsei;
RLSE

-- If so, then go on to the voting state

vote_state <= vO0;
EBD IF;

-- wait for the serp data to appear

WEEN rsed =>
vote_state <= rse5;

-- rse5 simply assigns the serp_data which appears on the data line to
-- vote_values

WREN rse5 =>
vote_values(current_member) <= serp_data;
current_member := current_member + 1;

vote_state <= rse3;

ey 2l A N X E A R R R S R R R R RSS2 22 R 2 SRR A2 2Rl R ARt SRRt ls sl

-- End section to read in the serp entries

-- v0 sends the OBNE and IBNF bits to the voter. Notice that the OBNE and
-- IBNF are the MSB and (MSB-1) bits of the byte sent to the voter.

-- MOTE : In the voter, ALL four entries are always converted and sent
-- to the voter. The redun_level signal tells the voter which inputs

-~ to ignore.

WEEN vO =>
FOR i IN 1 TO max_redun_level LOOP
bit_vote_values(i - 1} (obne_bit_pos) <=
convert to _bits(vote_values(i - 1).obne);
bit_vote_values(i - 1) (ibnf_bit_pos) <=
convert_to_bits(vote_values(i - 1).ibnf);
EMD LOOP;

vote_state <= vl;
-~ vl assigns the voted obne and ibnf “registers® there values, starts
-~ the timeout process, and sends the destination VID to the voter
WEEN v1 >
convert_back (voted_data(obne_bit_pos),voted_obne);

convert_back (voted_data(ibnf_bit_pos), voted_ibnf);

-~ start timeout process

start_to_check <= TRUE AFTER control_delay;

178

T = m— T —————— | — - -

|

FOR i IN 1 TO max_redun_level LOOP
bit_vote_values(i-1) <=

convert_to_bits (vote_values(i - 1).dest_vid);

END LOOP;

vote_state <= v2;

-- v2 converts the voted destination VID back and decides whether to continue
-- voting based on the results of the timeout calculation,
-- MOTE : I'm assuming timeout calculations take only one clock cycle.

-- This is unrealistic, but for now it wil)l do. Change the states around so
-- that whenever the timeouts are done, the voter decides whether to go on

-- voting or not.

WEER v2 =>
convert_back (voted_data,voted dest_vid);

-- IPF (majority + timeout) THEN continue voting ELSE stop
IF¥ voted _obne AND WOT(clear_obne) THEN

vote_state <= v3; -- last state of the voter
ELSE
vote_state <= v1;
ERD IF;

-- For now, don't vote the rest of the stuff

WHEN v3 =>
vote_state <= v7;

~-- v7 assigns the intermediate values to the voted_serp data port

WHEN v7 =>
voted_serp_data.obne <= voted_obne;
voted_serp_data.ibnf <= voted_ibnf;
voted_serp data.vid_is_simplex <= vid_is_simplex;
voted_serp_data.source_vid <= source_vid;
voted_serp_data.dest_vid <= voted_dest_vid;
voted_serp data.class <= voted_class;
voted_serp_data.obne_syndrome <= obne_syndrome;
voted_serp_data.ibnf_syndrome <= ibnf syndrome;
voted_serp_data.sb_vote_syndrome <= overall vote_syndrome;

voted_serp_address <= current_ptov_entry.vid;
voted_serp_rw <= f0 AFTER control_delay;
vids_voted := vids_voted + 1;

vote_state <= v8;

-- v9 checks to see if all vids have been voted. If so, then it signals that
-~ voting 1s done and idles the voter subcontroller

WEEN v8 =>
voted serp_rw <= fl1 AFTER control_delay;
I¥ vids_voted = num_vids THEN
done_voting <= TRUE;
vote_state <= rse0;
ELSE

-~ assert next ptov table address and start over

1™

ptov_address <= vids_voted;
vote_state <= rsel;
EXD IF;

-- Appease that damn syntax diety, again. He's a demanding bastage.
WHEN OTHRERS =>
ASSERT FALSE REPORT "PUKE"; -- SEVERITY ANNOYANCE;

END CASE;
END IF;

END PROCESS;

voter : voting_subsystem
PORT MAP
(

redun_level => redun_level,
presence => presence,

d => bit_vote_values(3),

¢ => bit_vote_values(2),

b => bit_vote_values(l},

a => bit_vote_values(0),
a_syndrome => a_syndrome,
b_syndrome => b_syndrome,
c_syndrome => c_syndrome,
d_syndrome => d_syndrome,

vote_result => voted_data,

is_flow_control => is_flow_control,
unan => unan
U

timeout : timeout_subsystem
PORT MAP
(
ct_to_value => timeout_value,
vid_1s_simplex => vid is_simplex,
clear_timeouts => start_clear,
load_timer => load_timer,
new_timer_value => new_timer_value,
ibnf_unan => convert_back (unan(ibnf_bit_pos)),
ibnf => voted_ibnf,
ibnf_syndrome_out => ibnf_syndrome,
clear_ibnf => clear_ibnf,
start_to_check => start_to_check,
check_done => check_done,
obne_syndrome_out => obne_syndrome,
obne_unan => convert_back (unan{obne_bit_pos)),
clear_obne => clear_obne,
obne => voted_obne,
source_vid => source_vid,
timer_value => current_timer_value,
clock => clock
):

END vote_timecut_struct;

Er e A Al 2R R R R R A R R R P R A R A X 2R 2R RS2SRRSR AR AR Rl ARl sl

-~ Voter and Timeout Structural Configuration
-~ This file contains the CONFIGURATION for the structural vote_timeout
=~ implementation.

- - - = - -~ - - - = = -~

CONFIGURATION cvote_timeout_struct OF vote_timecut IS

FOR vote_timeout_struct

FOR timeout : timeout_subsystem

! USE COMFIGURATION work.ctimeout subsystem
GEWERIC MAP (do_CMTO => FALSE):;
END FOR;

FOR voter : voting_subsystem

USE CONFIGURATION voters.cvoting_subsystem
GENERIC MAP (voter_delay => clock_period/4,
syndrome_delay => clock_period/4,
unan_delay => clock_period/4);
END FOR;

END FOR;

END cvote_timeout_struct;

181

10.7.2. Timeout Subsystem

LIBRARY score;

i USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE std.std_cmos.ALL;

USE score.voter_package.ALL;

USE score.address_package.ALL;
ENTITY timeout_subsystem IS

GENERIC
i (
; do_CMTO: BOOLEAN := FALSE
!):
PORT

{
4 vid_is_simplex: IN BOOLEAN;
clear_timeouts: IN BOOLEAN;
check_done: OUT BOOLEAN;
ct_to_value: IN timeout_type;
timer_value: OUT timer_range;
load_timer: IN t_wlogic;
new_timer_value: IN timer_range;
ibnf_unan: IN BOOLEAN;
ibnf: IN flow_control type;
ibnf_syndrome_out: OUT presence_type;
clear _ibnf: OUT BOOLEAN;
start_to_check: IN BOOLEAN;
obne_syndrome_out: OUT presence_type;
obne_unan: IN BOOLEAN;
clear_obne: OUT BOOLEAN;
obne: IN flow_control type.
source_vid: IN vid_type;
{ clock: IN t_wlogic

)2

ERD timeout_subsystem;
LIBRARY SCORE;

USE std.std_logic.ALL;
ARCHITECTORE timeout_subsystem OF timeout_subsystem

COMPORENT timer
PORT

(
clock: IN t_wlogic:
input_value: IR timer_range;
timer_value: OUT timer_range;
load timer: IN t_wlogic

)i

END COMPOKENT;
COMPONENT timeout_checker
GEWERIC
{
do_CMTO: BOOLEAN := FALSE;
simplex_is_special: BOOLEAN := FALSE
)
PORT

clock: IN t_wlogic;
flow_control bit: IN flow_control_type;
clear_flow_control: OUT BOOLEAN;
unan: IN BOOLEAN;
syndrome_out: OUT presence_type;
start_to_check: IN BOOLEAN;
to_memory_rw: OUT t_wlogic:
timeout_value: IN timer_type;
timer_value: IN timer_range;
check_done: OUT BOOLEAN;
ct_to_value: IN timeout_type;
vid is_simplex: IN BOOLEAN := FALSE;
to_address: OUT resolved_address;
clear_timeouts: IN BOOLEAN;
timeout_out: OUT timer_type

)i

END COMPONENT;
COMPORENT timeout_memory
GENERIC
(
read_delay: TIME := clock_period/4
y:
PORT
(
clock: IN t_wlogic;
address: IN resolved_address;
input: IN timer_type:;
output: OUT timer_type:
read write: IN t_wlogic
)i

END CONPONENT;

FOR scoreboard_timer:timer
USE CORNFIGURATION SCORE.ctimer behavior;

FOR obne_to_checker:timeout_checker
USE CORFIGURATIOR SCORE.ctimeout checker_bkehavior
GENERIC MAP (
do_CMTO => FALSE,
simplex_is_special => FALSE);

FOR ibnf to_checker:timeout_checker
USE CONFIGURATION SCORE.ctimeout_checker_behavior
GENERIC MAP (
do_CMTO => FALSE,
simplex_is_special => FALSE);

FOR obne_to_memory:timeout _memory
USE COMFIGURATION SCORE.ctimeout_memory_ behavior
GENERIC MAP (
read_delay => clock_period/4);

FOR ibnf_to_memory:timeout_memory
USE CONFIGURATION SCORE.ctimeout_memory_behavior
GENERIC MAP (
read_delay => clock_period/4);
SIGEAL SGNL0O00021: t_wlogic;
S8IGWAL SGNLO000051: timer_type;
SIGEAL SGNL000057: timer_type;
SIGEAL SGNLO00017: t_wlogic;
SIGUAL SGNL000049: timer_type;

SIGRAL SGNLOO00056: timer_type;
SIGNAL feedbackO: timer_range;

BEGIN
timer value <= feedback0;

scoreboard_timer: timer
PORT MAP (
load_timer => load_timer,
timer_value => feedbackO,
input_value => new_timer_value,
clock <> clock);

obne_to_checker: timeout checker
PORT MAP (

timeout_out => SGNLCO0056,
clear_timeouts => clear_timeouts,
to_address => OPEN,
vid_is_simplex => vid_is_simplex,
ct_to_value => ct_to_value,
check_done => OPEN,
timer value => feedback0,
timeout_value => SGNL000049,
tc _memory rw => SGNLOCOO17,
start_tc_check => start_to_check,
syndrome_out => obne_syndrome_out,
unan => obne_unan,
clear_flow_control => clear_obne,
flow_control_bit => obne,
clock => clock)

ibnf_to_checker: timeout_checker
PORT MAP ¢

timeout _out => SGNLOQOO0S57,
clear_timeouts => clear_timeouts,
to_address => OPEN,
vid_is_simplex => vid_is_simplex,
ct_to_value => ct_to_value,
check_done => check_done,
timer_value => feedbackC,
timeout _value => SGNLC0QOS51,
to_memory rw => SGNL00QO021,
start_to_check => start_to_check,
syndrome_out => ibnf_ syndrome_out,
unan => ibnf unan,
clear_flow_control => clear_ibnf,
flow_control bit => ibnf,
clock => clock);

obne_to_memory: timeout_memory
PORT MAP (
read_write => SGNL000O17,
output => SGNL000049,
input => SGNLO00OSS,
address => source_vid,
clock => clock);

ibnf_to_memory: timeout_memory
PORT MAP (
read write => SGNL000021,
output => SGNLOOOOS5],
input => SGNL0O00057,

address => source_vid,
clock => clock):

END timeout_subsystem;

——ttt.ﬁttt"Iiit'tiﬁi'.."ttiit'tttit.tiiﬁttiitt.i"tit'tt*‘.tt'tittiitt
-- Timeout Subsystem Structural Configuration

-- This file contains the CONFIGURATION for the structural

-- timeout_subsystem implementation.

CONFIGURATION ctimeout_subsystem OF timeout_subsystem IS
FOR timeout_subsystem

FOR scoreboard_timer:timer
USE CONFIGURATION score.ctimer_behavior;
END FOR;

FOR obne_to_checker:timeout_checker

USE CONFIGURATION score.ctimeout_checker_behavior
GENERIC MAP (

do_CMTO => FALSE,

simplex_is_special => FALSE).
END FOR;

-- A simplex is treated differently for IBNF than for OBNE, so make the
-- GENERIC the proper value

FOR ibnf to_checker:timeout_checker

USE CONFIGURATION score.ctimeout_checker_behavior
GENERIC MAP (

do_CMTO => FALSE,
simplex_is_special => TRUE);
END FOR:

FOR obne_to_memory:timeout_memory

USE CONFIGURATION score.ctimecut_memory_behavior
GERERIC MAP (

read_delay => clock_period/4);
END FOR;

FOR ibnf_to_memory:timeout memory

USE CONFIGURATION score.ctimeout_memory_behavior
GENERIC MAP (

read_delay => clock_period/4);
END FOR;
EUD FOR;

END ctimeout_subsystem;

10.7.8. Timeout Checker

LIBRARY score;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE std.std_cmos.ALL;

USE score.address_package.ALL;
USE score.voter_package.ALL;
ENTITY timeout_checker IS

GENERIC

(
do_CMTO: BOOLEAN := FALSE;
simplex_is_special: BOOLEAN := FALSE

)i

PORT

(
timeout_out: OUT timer_type;
clear_timeouts: IN BOOLEAN;
to_address: OQUT resolved_address;
vid_is_simplex: IN BOOLEAN := FALSE;
ct_to_value: IN timeout_type;
check_done: OUT BOOLEAN;
timer_value: IN timer_range;
timeout_value: IN timer_ type;
to_memory rw: OUT t_wlogic;
start_to_check: IN BOOLEAN;
syndrome_out: OUT presence_type;
unan: IR BOOLEAN;
clear_flow_control: OUT BOOLEAN;
flow_control _bit: IN flow_control_type;
clock: IN t_wlogic

)i

END timeout_checker;

s 28222 AR R R R S R R R A A A A R R R R A R R R RS R R R RS R

-- Timeout Checker Behavioral Architecture

-- This ARCBITECTURE contains the behavioral implementation of the
-- timeout checker. The generic do_CMTO flags wehter to perform a
-- Common Mode Timeout. This feature is currently not implemented,
-- but the hook is there.

ARCHITECTURE timeout_checker_behavior OF timeout_checker I8

TYPE checker_state_type I8 (c0,cl,c2,c3,cd);
SICHAL checker_ state : checker_state_type := cO0;

SIGHWAL difference : timer_range;
BEGIN
controller : PROCESS (clock,start_to_check)
BEGIN

IF clock = f1 AMD clock'EVENT THEN
CASE checker_state IS

WEEN cO =>
IF start_to_check THEN
checker_state <= cl;
ELSE
checker_state <= c0;
END IF;

WHEN cl =>
IP (flow_control_bit AND NOZY (unan)} OR vid is_simplex THEN
difference <= abs(timer_value -~ timeout_value.value);
checker_state <= c2;
ELSE

-- Place Common Mode Timeout code here

checker_state <= c4;
ERD IF;

WHEN c2 =>
IFr difference > ct_to_value THEN

-- The timeout period has expired

clear_flow_control <= FALSE AFTER control_delay;
checker_state <= c3;

ELSE
clear_flow_control <= TRUE AFTER control_delay;
checker_state <= c4;

END IF:

WEEN c3 =>
checker_state <= c¢{;

WHEN cd =>
check_done <= TRUE AFTER control delay;
checker_state <= cQ;

END CASEK;
ERD IF;
END ?2ROCESS;

END timeout checker_ behavior;

CONFIGURATION ctimeout_checker_behavior OF timeout_checker IS
FOR timeout_checker_behavior
END FOR;

END ctimeout_checker_behavior;

10.7.4. Timeout Memory
LIBRARY score;

USE score.voter_package.ALL;

USE std.std_logic.ALL;

USE std.std_cmos.ALL;

USE score.address_package.ALL;
USE score.scoreboard_package.ALL;
ENTITY timeout_memory IS

GENERIC
{
read_delay: TIME := clock_period/4
Y
PORT
(
read_write: IN t_wlogic;
output: OUT timer_type;
input: IN timer_type:;
address: IN resolved_address;
clock: IN t_wlogic
)

END timeout_memory:;

e A i R R R R R R R e R R A e R RS R R A e A R A A RS R RS RS XSRSl

-- Timeout Memory Behavioral ARCHEITECTURE
-- This file contains the behavioral ARCEITECTOUORE for the timeout
-- memory.

ARCHITECTORE timeout_memory_ behavior OF timeout_memory IS
BEGIN

behavior : PROCESS (clock,read_write,address)
VARIABLE memory : timeout_memory_ type(mem base TO max_vid);
BEGIN -
IF clock = f1 AND clock'EVENT TEHEN
IF read_write = f0 TREN
memory (address) := input;
ELSE
output <= memory (address) AFTER read_delay:;
ERD IF;
E¥ND ITF;
ERD PROCESS;
END;

CONFIGURATION ctimeout_memory behavior OF timeout_memor: IS
FOR timeout_memory_behavior
END FOR;

END ctimeout_memory_behavior;

10.7.5. Timer

LIBRARY score;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL:
USE std.std_cmos.ALL;

USE score.voter_package.ALL;
ENTITY timer IS

PORT

(
load_timer: IN t_wloglc;
timer_value: OUT timer_range;
input_value: IN timer_range;
clock: IN t_wlogic

)y:

END timer;

e 22 A R Y R R R N R R A R A R S A R R R R RS R R R RS R R AR

-~ Timer Behavioral Architecture

-~ This ARCHITECTURE contains the behavioral implementation of the
-- scoreboard's internal timer. Ideally, a selected signal assignment
-- statement should be used. However, because the current version

-- does not support BUFFER ports, a PROCESS must be used instead.

ARCBITECTURE timer_behavior OF timer IS
BEGIN

yo : PROCESS(clock)

-- this variable is required because the OUT port timer_value
-- cannot be read

VARIABLE temp_timer_value : timer_range := 0;
BRGIN

I¥ clock = f1 AWND clock'EVENT THEN
IF¥ WOT (temp_timer_value = max_timer value) THEN
temp_timer_value := temp_timer_value + 1;
BLSE

temp timer_value := init_timer_value;
EED IF;

I¥ load _timer = f1 TRHEN
temp_timer_value := input_value;

E¥D IF;

timer_value <= temp_timer_value;
EWD IF;

END PROCRESS;

END timer_behavior:

CONFIGURATION ctimer_behavior OF timer
FOR timer_behavior
END FOR;

END ctimer_behavior;

IS

10.7.6. Voting Subsystem

LIBRARY voters;
LIBRARY score;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE score.voter_package.ALL;
ENTITY voting_subsystem I8

GENERIC
(
voter_delay: TIME := 1 ns;
unan_delay: TIME := 1 ns;
syndrome_delay: TIME := 1 ns

’

PORT

presence: IN presence_type;
d_syndrome: OUT BIT_VECTOR(7 DOWNTO 0);
c_syndrome: OUT BIT_VECTOR(7 DOWNTO 0);
b_syndrome: OUT BIT_VECTOR(7 DOWNTO 0);
a_syndrome: OUT BIT VECTOR(7 DOWNTO O0);
is_flow_control: IR BIT;
redun_level: IN redun_level_type;
unan: ODT BIT_VECTOR(7 DOWNTO 0);
vote_result: OUT BIT_VECTOR(? DOWNTO 0);
d: IN BIT_VECTOR(7 DOWNTO 0);
c: IN BIT_VECTOR(7 DOWNTO 0);
b: IN BIT VECTOR(7 DOWNTO 0);
a: IN BIT_VECTOR(7 DOWNTO 0)

]

ERD voting_subsystem;
LIBRARY VOTERS;

USE std.std_logic.ALL;
ARCEITECTURE voting subsystem OF voting_subsystem IS

COMPOMENT eight _bit_voter
GENERIC
(
voter_delay: TIME := 1 ns
)i
PORT
(
is_flow_control: IN BIT:
result: OUT BIT_VECTOR(? DOWNTO 0);
a: IN BIT VECTOR(7 DOWNTO 0):;
b: IN BIT_VECTOR(7 DOWMTO 0);
c: IN BIT_VECTOR(7 DOWNTO 0);
d: IR BIT_VECTOR(7 DOWNTO 0);
redun_level: IN redun_level type
)i

ERD COMPOMENT;
COMPOMENT eight _bit_syndrome
GERNERIC
(

191

syndrome_delay: TIME := 1 ns

PORT

a: IN BIT_VECTOR(7 DOWHTO 0);

b: IN BIT_VECTOR(7 DOWNTO 0);

c: IN BIT_VECTOR(7 DOWNTO 0);

d: IN BIT_VECTOR(7 DOWNTO 0);
asyndrome: OUT BIT_VECTOR(7 DOWNTO O0);
bsyndrome: OUT BIT VECTOR(7 DOWNTIO O0);
csyndrome: OUT BIT_VECTOR(7 DOWNTO 0);
dsyndrome: OUT BIT_VECTOR(7 DOWNTO 0);
vote_result: IN BIT_VECTOR(7 DOWNTO 0);
presence: IN presence_type

)i

END COMPONENT;
COMPONENT eight_bit_unan
GENERIC
(
unan_delay: TIME := 1 ns
)y
PORT
(
a: IN BIT_VECTOR(7 DOWNTO 0);
b: IN BIT_VECTOR(7 DOWNTO O0);
c: IN BIT_VECTOR(7 DOWNNTO 0):;
d: IN BIT _VECTOR(7 DOWNTO 0);
vote_result: IN BIT_VECTOR(?7 DOWNTO 0);
unan: OUT BIT VECTOR(?7 DOWNTO 0);
redun_level: IN redun_level _type
)

EHD COMPONEST;

FOR voter:eight_bit_voter
USE CONFIGURATION VOTERS.cfull voter_behavior
GENERIC MAP (
voter_delay => 1 ns);

FOR syndrome_generator:eight_bit_syndrome
USE CONFIGURATION VOTERS.cfull syndrome_behavior
GENERIC MAP (
syndrome_delay => 1 ns);

FOR unan_generator:eight_bit_unan
USE CONFIGURATION VOTERS.ceight_bit_unan_behavior
GEMERIC MAP ¢
unan_delay => 1 ns);
SICHNAL feedbackO: BIT_VECTOR(7 DOWNTO 0);

BEGIN
vote result <= feedbackO;

voter: eight bit_voter

PORT MAP (
redun_level => redun_level,
d => d,
c = c,
b => b,
a => a,
result => feedbackO,

is_flow_control => is_flow_control);

syndrome_generator: eight_bit syndrome

PORT MAP (
presence => presence,
vote_result => feedbackoO,
dsyndrome => d_syndrome,
csyndrome => c_syndrome,
bsyndrome => b_syndrome,
asyndrome => a_syndrome,
d =>d,
c => c,
b => b,
a =>a);

unan_generator: eight_bit_unan

PORT MAP (
redun_level => redun_level,
unan => unan,
vote_result => feedbackO,
d => d,
c => ¢,
b => b,
a => a);

END voting_subsystem;

CONFYIGURATION cvoting_subsystem OF voting_subsystem IS

FOR voting_subsystem

FOR voter:eight bit_voter

USE CONFIGURATION work.cfull voter behavior
GENERIC MAP (

voter_delay => 1 ns);
ERD FOR;

FOR syndrome_generator:eight_bit_syndrome

USE CORFIGURATION work.cfull_syndrome_behavior
GENERIC MAP (

syndrome_delay => 1 ns);
END FOR;

FOR unan_generator:eight_bit_unan

USE CONFIGURATION work.ceight_bit_unan_behavior
GENERIC MAP |

unan_delay => 1 ns };
END FOR;

END FOR;

X¥D

cvoting_subsystem;

10.7.7. One Bit Voter

LIBRARY voters;
LIBRARY score;

USE std.std_logic.ALL;

USE std.std_cmos.ALL;

USE score.scoreboard_package.ALL;
ENTITY one_bit_voter IS

GERERIC
(
voter_delay: TIME := 1 ns
)2
PORT
(
is_flow_control: IN BIT;
redun_level: IN redun_level type;
result: OUT BIT;

d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

Y

END one_bit_voter;

P 2 R Y P R R R R R R AR SRS 2R 22 S22 X2 222X R 2SR R R R ARl R RS

~- One Bit Voter Behavioral description
- This file contains the behavioral description of a one bit voter.
~- It uses a selected signal assignment statement to vote based on

-~ the redundancy level.

ARCEITECTOUORE one _bit_voter_behavior OF one_bit_voter 1S
BEGIN
voter_process : PROCESS(a,b,c¢,d,redun_level,is_flow_control)

VARIABLE flow_quad_result,data_guad_result : BIT := ‘'0';
VARIABLE quad_result,triplex_result,simplex_result : BIT := '0';

BIGIN
ASSERT WOT (redun_level = zero)
REPORT "redun_level in voter is zero!”
SEVERITY ERROR;

simplex_result := a;

-- For triplex voting, the 'd' input can be ignored since it will not have
-- valid data on it

triplex_result := (a AND b) OR (a2 AND c) OR (b AND c¢);

flow_quad_result :=
(a AND b AND c) OR (a2 AND b ARD d) OR
(a AND c AND d) OR (b AND c AND d);

data_quad_result :=

(a AND b) OR (a AND c) OR (a AMD d) OR
(b AND c) OR (b AND d) OR (c AWND d):

IF is_flow _control = '1'

quad_result := flow_quad_result;

ELSE

quad_result := data_quad_result;

END IF;

CASE redun_level 1§
WHEN zero => result <=
WHEN simplex => result
WHEN triplex => result
WHEN quad => result <=

ERD CASE;

END PROCESS;

END one_bit_voter_behavior;

'0' AFTER voter_delay;

<= simplex_result AFTER voter_delay;
<= triplex_result AFTER voter_delay;
quad_result AFTER voter_delay:

CONFIGURATION cone_bit_voter_behavior OF one bit_voter IS

FOR one_bit_voter_ behavior
END FOR;
END cone_bit_voter_behavior;

10.7.8. One Bit Unanimity Generator

LIBRARY score;
LIBRARY voters;

USE std.std_logic.ALL;

USE std.std_cmos.ALL;

USE score.scoreboard_package.ALL;
USE score.voter_ package.ALL;
ENTITY one_bit_unan IS§

GENERIC

(

unan_delay: TIME := 1 ns

|
PORT

(
; redun_level: IN redun_level type;
vote_result: IN BIT;
unan: OUT BIT;

d: IN BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

)z
END one_bit unan;

e AR R R R R 22 R R A R R R R A S S AR 2RSSR SRR AR R ARl R RS ARl R RRRRA A

-- One bit unanimity checker
-- This file contains the behavioral description of a single bit
-- unanimity checker.

ARCEBITECTURE one_bit_unan_behavior OF one_bit_unan IS
BEGIN
unan_checker: PROCESS (a,b,c,d,vote_result,redun_level)

VARIABLE quad_result,triplex_result,simplex_result : BOOLEAN := FALSE;

BEGIN
simplex_result := TRUE;
triplex_result := (a = vote_result) ARD
(b = vote result) AND
(c = vote_result);
quad_result := (a = vcte_result) AND

(b = vote_result) AND
(c = vote_result) ARD
(d = vote result);

CASE redun_level I8
WHEN zero => unan <= '0' AFTER unan_delay;
WEEW simplex =>
unan <= convert to_bits(simplex_result)} AFTER unan_delay;
WREN triplex =>

unan <= convert_to_bits(triplex_result) AFTER unan_delay;
WHEN quad =>
unan <= convert_to_bits(quad_result) AFTER unan_delay;
ERD CASE;

ERD PROCESS;

END one_bit_unan_behavior;

CONFIGURATION cone_bi:t_unan_behavior OF one_bit_unan IS
FOR one_bit_unan_behavior
END FOR:;

END cone_bit_unan_behavior;

' 10.7.9. One Bit Syndrome Accumulator

i LIBRARY score;
LIBRARY voters;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE std.std_cmos.ALL;

USE score.voter_ package.ALL;
ENTITY one_bit_syndrome IS

GENERIC
(
syndrome_delay: TIME := 1 ns
)i
PORT
(
presence: IR presence_type;
vote_result: IN BIT;
dsyndrome: QUT BIT;
csyndrome: OQUT BIT;
bsyndrome: QUT BIT;
asyndrome: OUOT BIT;

d: IR BIT:
c: IN BIT;
b: IN BIT;
a: IN BIT

)
END one_bit_syndrome;

__itttit'ttt't"it'iQ'it'tii'lti'*ttittt'it*'i'.,"ti!tiii!itit*tti‘t'tt'
-- One Bit Voter Behavioral description

-- This file contains the behavioral description of a one bit voter.
-- It uses a selected signal assignment statement to vote based on

-- the redundancy level.

ARCHITECTOURE one_bit syndrome_behavior OF one_bit_syndrome IS

BEGIN

END one_bit_syndrome_behavior;

CONTIGURATION cone_bit syndrome_behavior OF one_bit_syndrome IS
FOR one_bit_syndrome_behavior
END FOR;

ERD cone_bit_syndrome_behavior;

10.7.10. Eight Bit Voter

LIBRARY score;
LIBRARY voters;

USE std.std_logic.ALL;

USE score.scoreboard_package.ALL;
USE score.voter_package.ALL;

USE std.std_cmos.ALL;

ERTITY eight_bit_voter IS

GENERIC
(
voter_delay: TIME := 1 ns
yi
PORT
(
redun_level: IN redun_level _type;
d: IN BIT_VECTOR(7 DOWNTO 0);
c: IR BIT_VECTOR(7 DOWRTO 0);
b: IN BIT_VECTOR(7 DOWNTO 0);
a: IN BIT_VECTOR(7 DOWNTO 0);
result: OUT BIT_VECTOR(7 DOWNTO O0);
is_flow_control: IN BIT
)i

END eight_bit_voter;

PRS2 R E X R 2R R R AR R XX E R R AR R AR R R R RS R 22 iR R R il sl 2R iR R R R RN R SRS
-~ Eight bit voter

-~ This file contains the structural description for an eight bit

-- voter. A generate statement creates and maps the 8 one bit voters.

ARCHITECTURE eight_bit voter_behavior OF eight_bit_voter IS

COMPORENT one_bit_voter
PORT
(
is_flow_control: IR BIT;
redun_level: IN redun_level type;
result: OUT BIT;

d: IN BIT;
c: IN BIT;
b: IR BIT;
a: IR BIT

):
END COMPONENT;

BEGIN
voter_gen ; FOR i IN result'RANGE GEWERATE

slice : one_bit_voter PORT MAP
(
is_flow_control => is_flow_control,
redun_level => redun_level,
result => result(i),
da => diy,
c => c(l),

[

b => b(i),
a => a(i)
|

END GENERATE voter _gen;

BND eight_bit_voter_behavior:

CONFIGURATION cfull_ voter_behavior OF eight_bit_voter IS
FOR eight bit_voter_behavior
FOR voter_gen
FOR slice : one_bit_voter
USE CONFIGURATION voters.cone_bit_voter_behavior
GENERIC MAP (voter_delay => voter_delay);
END FOR;
ERD FOR;
ERD TOR;
END cfull voter_behavior;

Y’

10.7.11. Eight Bit Unanimity Generator

LIBRARY score;
LIBRARY voters;

USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
ENTI?Y eight_bit_unan IS

GENERIC
(
unan_delay: TIME := 1 ns
):
PORT
{
redun_level: IN redun_level_type;
unan: OUT BIT_VECTOR(7 DOWNTO O0);
vote_result: IN BIT VECTOR(7 DOWNTO 0);
d: IN BIT_VECTOR(7 DOWNTO 0);
c: IN BIT_VECTOR(7 DOWNTO 0);
b: IN BIT_VECTOR(?7 DOWNTO 0);
a: IN BIT_VECTOR(7 DOWNTO O0)

)i

END eight_bit_unan;

ECAAA RS AR AR XSRSl R R R R R R S R R R R I R AR 2

-- Eight unan checker
-- This file contains the structural description for an eight bit

~- unanimity checker.

ARCHITECTURE eight_bit_unan_behavior OF eight_bit_unan IS

COMPONERT one_bit_unan
PORT
(
redun_level: IN redun_level_type;
vote_result: IN BIT;
unan: OUT BIT;

d: IR BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

|
END COMPONENT;

BEGIN
unan_gen : FOR i IN unan'RANGE GENERATE

slice : one_bit_unan PORT MAP

(

vote_result => vote_result (i),
redun_level => redun_level,
unan => unan(i),
d => d(i),
c => c(i),
b => bii),
a => a({)

201

):
END GENERATE unan_gen;
END eight_bit_unan_behavior;

CONFIGURATION ceight_bit_unan_behavior OF eight_bit unan IS
FOR eight_bit_unan_behavior
FOR unan_gen
FOR slice : one_bit_unan
USE CORFIGURATION voters.cone_bit_unan_behavior
GENERIC MAP (unan_delay => unan_delay);
RND FOR;
END FOR;
END FOR;
END celight_bit_unan_behavior;

‘ 10.7.12. Eight Bit Syndrome Accumulator

LIBRARY score;
] LIBRARY voters;

! USE std.std_logic.ALL;
USE score.scoreboard_package.ALL;
USE std.std_cmos.ALL;
USE score.voter_package.ALL;
ENTITY eight_bit_syndrome IS

GENERIC
(
syndrome_delay: TIME := 1 ns
)
PORT
(

presence: IN presence_type;
vote_result: IN BIT_VECTOR(? DOWNTO 0);
dsyndrome: OUT BIT_VECTOR(7 DOWNTO 0);
csyndrome: OUT BIT_VECTOR(7 DOWNTO 0);
bsyndrome: OUT BIT_VECTOR(7 DOWNTO 0):
asyndrome: QUT BIT_VECTOR(7 DOWNTO O);
d: IN BIT_VECTOR(7 DOWNTO U);

c: IN BIT_VECTOR(7 DOWNTO 0);

b: IR BIT_VECTOR(7 DOWNTO 0);

a: IN BIT_VECTOR(7 DOWNTO 0)

):

END eight_bit_syndrome;

ey X 22 2 2 R R R A R R R R R R A R R R R R R R ISR RSl RS s A RRR Sl ER Rl R

-- Eight bit syndrome
-- This file contains the structural description for an eight bit
-- syndrome. A generate statement creates and maps the 8 one bit syndromes.

ARCHITECTURE eight_bit_syndrome_behavior OF eight_bit_syndrome IS8

COMPONEINT cne_bit_syndrome
PORYT
(

presence: IN presence_type;
vote_result: IR BIT;
dsyndrome: OUT BIT;
csyndrome: OUT BIT;
bsyndrome: OOUT BIT:
asyndrome: OUT BIT;

d: IR BIT;
c: IN BIT;
b: IN BIT;
a: IN BIT

)z
END COMPONENT;

BECIW
syndrome_gen : FOR i IN vote_result 'RANGE GENERATE

slice : one_bit_syndrome PORT MAP

(
presence => presence,
vote_result => vote_result(i),
dsyndrome => dsyndrome (i),
csyndrome => csyndrome(i),
bsyndrome => bsyndrome (i),
asyndrome => asyndrome (i),

d => d(i),

c => cii),

b => b(i),

a => a(i)
)i

END GENERATE syndrome_gen;
END eight_bit_syndrome_behavior;

CONFIGURATION cfull_ syndrome_behavior OF eight_bit_syndrome IS8
FOR eight_bit_syndrome_behavior
FOR syndrome_gen
FOR slice : one_bit_syndrome
USE CORFIGURATION voters.cone_bit_syndrome_behavior
GENERIC MAP (syndrome_delay => syndrome_delay);
END FOR;
END FOR;
END FOR;
END cfull syndrome_behavior;

10.8. C Test Vector Generator

This appendix contains the complete C source code for the scoreboard test vector

generator.

10.8.1. File configh

e et — ——

This file contains global configuration information such as the location within the
SERP of the OBNE and IBNF bits.

/t"'tt'ti't""'.'tttt'ii'tt....'i‘""'tti'tttttiitii'ﬁ"ﬁ'ﬁ't'ti"/

/* Define configuration information */
/* bit is located and how many bytes per serp_entry ./

FAAAAAARL AL A A RS AR AR ARl SRRl iRttt il it ltlddls]

i /* changing these defines will change such things as where the obne */

/* bytes per entry in the voted_serp array */

/* changing this also requires that the write result procedure be */
/* changed as well (it's in the vote.c source file >/
$define Vs 7

/* these definitions all affect the voted serp array. Be careful!! */

#define VS_to_loc 0

#define VS _obne_loc 1

#define VS_ibnf loc 1

#define VS class_loc 1

#define VS_dvid_loc 2

. tdefine VS_obne_syn_loc 3

' tdefine VS_ibnf_syn_loc 4
#define VS_timer_loc 5

d4define VS_init _timer_loc 6
#define VS_processed bit_loc 1

- A

/* define masks for the voted serp array */
#define VS_obne_mask Ox80

f#define VS _ibnf_mask 0x40

#define VS_class_mask Oxlf

#define VS_obne_syn mask OxOf

tdefine VS _ibnf_syn_mask OxOf

ddefine VS_processed_bit_mask 0x20

/* These #defines correspond to the locations of all the bytes in v/
/* the SERP and CT */
/* NOTE that the first entry is numbered 0O */

/* CT related locatjons */

fdefine Bytes_per CT _entry 8

f#define Redun_loc 1

#define Presence loc 1

fdefine Base pe_loc 2 /* location of the first PE in a CT entry */
t#define To_loc 6

/* SERP related locations */
f#define Bytes_per SERP_entry 4
$define Dvid_loc 1

t#define Obne_loc 0

d#define Ibnf_loc 0

fdefine Class_loc 0

/* System configuration definitions */

#define
#define
#define
#define
#define

Max_redun_level 4
Num_ne S
Pe_per_ne 8
Num_vids 256
Max_vid 254

/* These masks correspond to the location within a byte. They don't =*/

/* need

#define
$#define
$¢define
#define
$define
4define
#define

to be changed unless the bit locations are changed. ./

obne_mask O0x80
ibnf_mask 0x40
class_mask Oxl1f
redun_level_mask Ox7
presence_shift 3
ne_mask O0x07;
pe_shift 3

/* End configuration information */
/tt't'it"it'ttltttt'ttt!.ititttittﬁ"ttt'i.ti't"t'tti‘tiiﬁtttttt.tt/

10.8.2. File sbdefs.h

This file contains global definitions and variables.

/* Scoreboard simulation program

by
Dennis Morton
3 Jan 1991

revision 2.2 (everything parameterized, file output added}
*/

#include “config.h"

/"it.i't.I'ttt.t"ittﬁﬁ*tﬁti"t"ﬁt.tt."'.".ﬁ‘i‘."ﬁt".t""".""'t/

/* This header contains globals used by the simulation */

/"'t'tt.t'ti.i..'ﬁ.'ﬁii't"'Q'i.i."ttti't'.t.'-i.""'t"i'tt't'ttﬁ/

fdefine True 1
#define False O©
tdefine Prob_fault 1

typedef int Boolean;

typedef int Byte;

typedef int Bit;

typedef Byte Serp_type[Pe_per_ne * Num_ne * Bytes_per_ SERP_entry):;

struct message_struct
{
Byte source_vid;
Byte dest_vid;
Byte sources(Max_redun_level];
Byte dests(Max_redun_levell;
Byte obne_to;
Byte ibnf_to;
Byte timer_value;
Byte itv; /* initial timer value */
Byte ex_class;
Byte timestamp;
Byte vote_mask;
Byte size;
bs

/tt't'ﬁ'ottt..«ﬁt.ﬁ‘tﬁ"iQ"-tt't‘t.'ita.tt't"t.i'i'tttttittttt/

/* this structure is used to generate serps. serps_to_do tells */
/* how many times to include that entry as a potential message */
/* in the serp. serps_done tells how many serps have been sent */
/* with that entry. When these two become equal, source_vid is */
/* added to the free_sources array. On the next serp, new */

/* parameters will be generated for source_vid. */
/.'t"""‘.."'.""t"..'tﬁ""'t"'..'"."."'i"l"'.'i'*."/

struct serp_source_struct
{
Byte source_vid;
Byte dest_vid;
/* srd = source redundancy level, drd = destination redun level */
Byte srd;
Byte drd;
Byte obne_to;
Byte ibnf_to;

Byte to_value;
int serps_done;
} gserp source([Num_vids];

/* correct message array */
struct message_struct gcmessage(Pe_per_ne * Num_ne);

/* messages found by simulation */
struct message_struct gmessage(Pe_per_ne * Num_ne);

Serp_type serp;
Byte gvoted_serp[Num_vids * VS];

/""'i*'t't""."i'..t"iﬁﬁtiﬁ'tiii"tii*ii.ﬁtﬁ".ti/

/* define lookup tables used by the various modules */
/tttiit!ttttt'ttﬁﬁ‘-t'iii't'ttiitttititt.t'tttititt't/

int to{Num_vids]:

Byte ct[Num_vids * Bytes_per CT_entry];

Byte gvids_used[Num_vids];

Byte ptov_table(Pe_per ne * Num ne * Bytes_per_ SERP_entry];
Boolean gfree_sources{Num_vids}];

Boolean gfree_dests{Num_vids]);
/i.tttitl"t'itii!ﬁ't'l"'*'ﬁ*t'tit't'*iti’ttt*tittttt'kt/

/* to_clock is an integer which emulates a clock */
int to_clock;

/* num_vids contains the number of defined vids currently in the ct */

int gnum_vids;

/* this variable contrcls the verbosity of the output */
/* 1 = keep it simple */

/* 2 = intermediate but useful for bugs */

/* 3 = inundate me with info */

int debug_level;

/* This flag decides whether to generate faults or not */
Boolean generate_faults;

/* This variable determines how many total rounds to perform */
int num_rounds;

/* this array is used to generate the presence bits */
Byte gpmasks([Max_redun_level];

10.8.8. File ctc

This file contains functions to generate and check the CT.

#include "sbdefs.h"

/tttﬁtiiiit'titttttii"ﬁt file ct.c L2222 2222222222222 22222 X222 X2
* This file contains the source code which generates anc checks *
* the configuration table. It also clears all the important *

* variables and arrays. *
'ititttttititt't.i"-'ttii'iititi'ti'ttti"i'.."".."'t'tttit./

/* These numbers affect how likely each redun level will be */
/* generated */
#define Prob_simplex S
#define Prob_triplex 11

/'ii'i‘i't"ﬁlt.t'ﬁti‘t* get table 22 EREEZZZESXR22R2A2E22 R 2R 2R RN
* get_table generates the PID to VID translation table used to *

* feed the voter one VID at a time *
"ﬁ""'ﬁt't".'ﬁtt!iﬁ"tii'iﬁtiitt't"iiﬁt*'fi"iﬁ't"'*"tﬁ"'/

void get_table()
{
int i, 3, serp_place;
Byte redun_level;
/* calculate the pid to vid translation table which will allow */
/* the voter to be fed one vid at a time */

serp_place = 0;
for(i = 0; i <= (gnum_vids - 1}; i++}
{
redun_level = ct{gvids_used[i] *
Bytes_per CT_entry + Redun_loc] & redun_level mask;
ptov_table(serp_place] = redun_level;
serp_place += 1;
for(j = 0; j <= (redun_level-1); j++)
{
ptov_table(serp_place] = unpack(ct(gvids_used{i] *
Bytes_per_CT_entry +
Base_pe_loc + 3]);
serp_place += 1; .

}

/.""'.""""'.""'i" check ct I2XE22X 222222222222 RX2R X4

* ensures that a single pe is not a member of more than 1 VID *
.."..Q"'t".l.""t'.iit.'tt"t'.t.'Ottt"."i"t.t"i't'itt't,

void check_ct ()

{
int i,j,vid‘loc,redun_level,ne,pe,number_pes;
int rl,r2,r3,r4,r5; /* redundancy level counters */
int upe(Pe_per_ne * Num_ne); /* pe's used in a VID */

rl =
ré2 =
rl =
r§ =
r5 =

. w. wo

OO0 O0OO0COo

for(i = 0; 1 <= (Pe_per_ne * Num_ne - 1); i++)
upe[i] = 0;

for(i = 0; i < gnum_vids; i++)

(
vid_loc = gvids_used(i] * Bytes_per CT entry;
redun_level = ct[vid_loc + Redun_loc] & redun_level_mask;
switch (redun_level)

{
case 1: printf("\nvid %i is a simplex\n",ct{vid_loc]};

rl += 1;
break;
case 2: printf("\nWARNING!! vid %i is a duplex\n",ctlvid_loc));
r2 += 1;
kreak;
case 3: printf(”\nvid %i is a triplex\n",ct(vid_loc));
r3 += 1;
break;
case 4: printf(”\nvid 8i is a quad\n®,ct(vid_loc]);
r4 += 1;
break;
case 5: printf("\nvid %i is a quint\n*,ct{vid_loc]};
r5 += 1;
break;
}
for (3 = 0; j <= (redun_level-1); J++)

{
ne = ct{vid loc + Base_pe_loc + 3! & ne_mask;
pe = ctlvid_loc + Base_pe_loc + j] >> pe_shift;
printf ("member %i: ne = %i, pe = %i\n", j, ne,pe};
if (upe((ne * Pe_per_ne) + pel)
printf ("WARNING'! ne = %i pe = %i used more than once in ct\n"
, ne,pe);
else upel(ne * Pe_per_ne) + pe] = .;
}
}
number_pes = (r5 * 5} + (r4 * 4) + (r3 * 3) + (r2 * 2) + rl;
if (number_pes > (Pe_per ne * Num_ne))
printf ("WARNING'! Used too many pe's\n\n");

printf ("\nThe redundant groups broke down like so:\n"):

printf (" simplex = %i\n",rl):
printf(" duplex = %i\n",r2);
printf (" triplex = %i\n",r3);
printf(" quad = %¥i\n",r4);
printf (" quint = 8i\n\n",r5);

}

/'-'."'..""'.'.""'ti"ﬁ't' get ct YIS E R E 22 R 2 2 22 XA S R0 SRR

* generates a new ct when called *

'.ﬁ."t.t."'.'t"tl.'t".."t't"'.""'.'Q'i"."t"t"'..ﬂ""t"'/

void calculate_ct ()
{
irt 1i,J,place,starting_place,num_entries_found,ct_entry(5};
int ne,pe,desired_redun, redun_level, presence;
int remaining_pes,used_pes(Pe_per_ne * Num_ne]l;
Byte vid;
Boolean vid_filled,able_to fill vid,got_a_vid,once_around;

for (i = 0; i <= (Pe_per_ne * Num_ne - 1); 1i++)

210

used_pes(i] « 0;
remaining_pes = Pe_per ne * Num_ne;
place = 0;
while (!(remaining_pes == 0))
{
desired_redun = random() & Oxf;
if (desired_redun <= Prob_simplex)
desired_redun = 1;
else if (desired_redun <= Prob_triplex)
desired_redun = 3;
else
desired_redun = 4;
if (desired_redun > Max_redun_level)
desired redun = Max_redun_level;

vid_filled = False;
able_to_fill vid = True;
once_around = False;
num_entries_found = 0;
starting_place = place;
while (!(vid_filled) && able_to fill vid)
{
if (used_pes{place) == 0)
{
ct_entry[num entries_found] = place;
num_entries_found += 1;
/* skip to next NE */
place = ((place / Pe_per ne) + 1) * Pe_per_ne;
)
else place += 1;

if (place > (Pe_per_ne * Num_ne))
{
place = 0;
once_around = True;
}
if (once_around é& (place >= starting_place)}
able_to_fill_vid = False;
if (num_entries_found == desired_redun)
vid_filled = True;
}
if (vid_filled)
{
/* Find a vid number for the new virtual group */
got_a_vid = False;
while (!(got_a_vid))
{
vid = random() & Oxff;
if ('(vid_found(vid)) && (vid <= Max_vid))
got_a_vid = True;
)
presence = 0;
ct{vid * Bytes_per CT_entry + Redun_loc] = desired redun;
for (i = 0; 1 <= (desired_redun - 1); 1i++)
{
/* this fashions the proper number of presence bits */
presence |= gpmasks[i];
ne = ct_entryli] / Pe_per_ne;
pe = ct_entry[i] M Pe_per_ne;
ct[vid * Bytes_per CT_entry + i + Base_pe_loc] = pack(ne,pe);
used_pes [ct_entry{i)] = 1;
}
ct(vid * Bytes_per_ CT_entry + Presence_loc] |=
(presence << presence_shift);

211

e — b

- —a—

/* set a timeout value for the vid */

ct{vid * Bytes_per CT entry + To_loc] = random()
gvids_used(gnum_vids] = vid;

gnum_vids += 1;

remaining_pes -= desired_redun;

& Oxff;

)

/"ﬁi*iii.'ittiiﬁii'."' init ar:ays (2222 ERTS SR 2222222 X222 R dd]

* this routine clears the vids_used array,the ct, and the gnum_vids

* variable.
'tttttttittiitiit"tittititttttttttitlt'tititltittt*ttltttttit't'ttt/

*

-

void init_arrays()
{
int {i,vid;

gpmasks{0] = 1;
for (4 = 1; { <= (Max_redun_level - 1); 1i++)

gpmasks[i] = gpmasks{i - 1] * 2;

for (i = 0; i <= (Pe_per_ne * Num_ne * Bytes_per SERP_entry - 1); i++)
ptov_table(i] = -1;

for (vid = 0; vid <= (Num_vids - 1); vid++)
ct(vid * Bytes_per CT entry] = vid;
for (i = 0; 1 <= (Num_vids - 1); i++)

{
gvids_used[i] = -~1;
gfree_sources(i] = True;
gfree_dests{i] = True;
}
gnum_vids = 0;
}

/"tit’tﬁﬁ"'.’iﬁttit.tt.itti’ttttit""'tt‘.tﬁ'-ﬁt.'-ttitt.t'.tﬁi/

/* Clear_voted_serp . */
/* This function clears the processed bits in the voted serp */
*/

/* array.
/'Qt't.'tt'lﬁt't.ﬁ.tttittttQ!tittttt"tittﬁt"t'it'ttt't.tltt'it‘t/

void clear_voted_serp ()
{
int i,

for (i = 0; i <= gnum_vids; 1i++)
gvoted_serpi{gvids_used[i] * VS + VS_processed_bit_loc)
“= VS_processed_bit_mask;

10.8.4. File nf_serp.c

This file contains functions to generate a SERP which does not contain any faults.

#include "sbdefs.h"

/t'ﬁt't.i‘ﬁ*t"."' set bytes 2222232222222 X222 2R2 222 2ddd 2

* this function sets the dest_vid field of svid to dvid, the *
* ibnf bits of svid, and the obne bits of dvid. It then *

* builds a reference message for error checking. *
ttltlﬁti't.itt""tit"tiitt'ii'ttii'ﬁ’iﬁt't.iittti.!ii"'tii/

void nf_set bytes (svid,dvid,num_messages)
Byte svid,dvid;
int *num_messages;
{
Byte ex_class = 1;
[Byte source_presence,dest_presence;
int i,redun_level,pe;

/* set to,dest buffer,obne,exchange class, and dest vid for source */

redun_level = ct(svid * Bytes_per_CT_entry + Redun_loc)
& redun_level mask;

for (i = 0; i1 <= (redun_level = 1); i++)

{
pe = unpack(ct[svid * Bytes_per_ CT_entry + Base_pe_loc + i});
serp{ (pe * Bytes_per_ SERP_entry) + Obne_loc] |= obne_mask;
serp((pe * Bytes_per_ SERP_entry) + Class_loc) |= ex_class;
serp{ (pe * Bytes_per_ SERP_entry) + Dvid_loc] = dvid;

}

/* set ibnf for destination */

redun_level = ct(dvid * Bytes_per CT entry + Redun_loc]
¢ redun_level mask;

for (i = 0; i <= (redun_level - 1); i++)

{
pe = unpack(ct{dvid * Bytes_per CT entry + Base_pe_loc + i}]);
serp[(pe * Bytes_per SERP_entry) + Ibnf_loc] I|= ibnf_mask;

}

source_presence = ct{svid * Bytes_per_CT_entry + Presence_loc]
>> presence_shift;

dest_presence = ct[dvid * Bytes_per CT_entry + Presence_loc]
>> presence_shift;

set_messaqe(num_messages,svid,dvid,ex_class,source_presence,

dest_presence);
)

/'t'.'.t."."""' genetate nf ’etp (2322 22222220222 2ald R 2l sl

* generates a new no-fault serp by randomly sending messages *

* becween VID's. It alsoc builds the correct-message structure *
"'t"..".."'...".'.iti't"ﬁ't."'Q'.."iﬁ".*.*...'i'i""/

void generate_nf_serp(num_messages)

int *num_messages;

(
Boolean got_source = False,got_dest= False,all _done = False;
int i,vids_left,pot_svid,pot_dvid;
int used_sources{Num_vids],used_dest [Num_vids);

*aum_messages = 0;
vids_left = gnum_vids;

213

/* initialize serp to 0O */
for (i = 0; 1 <= (Pe_per_ne * Num_ne * Bytes_per SERP_entry - 1); i++)
serp{i) = 0;

/* initialize "used™ array's to zero */
for (i = 0; i <= (Num_vids - 1); i +4)
{

used_sources[i]) = 0;

used_dest(i] = 0;

}

while (!(all_done))
{

.

while (!(got_source))
{
/* generate a random VID from O to 255 */
/* pot_svid = potential source vid */
' pot_svid = random() & Oxff;

if (vid_found(pot_svid))
] if (!(used_sources|[pot_svid]))
{
/* source VID found, invalidate this VID as a potential source */
used_sources[pot_svid] = 1;
got_source = True;
}
}

while (!({got_dest))

{
/* pot_dvid = potential destination vid */
pot_dvid = random() & Oxff;
if (vid_found(pot_dvid))

| if (!(used_dest[pot_dvid]))

{
/* invalidate this VID as a potential dest */
used_dest [pot_dvid] = 1;
got_dest = True;
nf_set bytes (pot_svid,pot_dvid,num_messages);
*num_messages += 1;
vids_left -= 2;

- A

}

if (vids_left < 2)
all_done = True;

got_source = False;

got_dest = False;

214

10.8.5. File serp.c

This file contains functions to generate a SERP which contains faults embedded in

it. This version does not work correctly.

#include "sbdefs.h"
int num_faults;

/tttttt't.ititt.tt'tiittttttitttti'itt'ttt"ttt'tt't"'!.ttttit‘iittt/
/tttt'ttt.‘t'tti..t"fi'tt :1le ’erp.c 123422222 2222222222222 22 X2 X223
* This file containd the source code which generates the serp. It -
* ypdates the serp_source array, and then it creates a SERP from *

* that array. d
t'tt'ti'ttt'tttttttt"tttt'tt't.'tt!'.t'.tt‘ttttt'ttttttttttttittttit/

/'.'ttiﬁi.'t"'.'tiii'.""."""'i.t-t".iit"ﬁﬁ"ﬁ."“it"'i""i/

/’"t"."'t”ﬁ""tttt!ti"ii' Pack (2222222222222 22222 2R RA

hd pack converts an (ne,pe) pair into its corresponding byte hod

* representation in the ct. ol
"Iii"t'tit"'*i..""'tt"ttii'"ﬁ.t'tt.litt'ilt'iﬁ"'""it'.ttititit/

Byte pack (ne, pe)

int ne,pe;
{

return((pe << pe_shift) ! ne);
}
/."t""'.tt"i!t' unpack 222X B2 2222 22Z2 22222222 X2 X dd g
* this function "unpacks™ the physical pe number encoded in *
* the ct. *

P T AR R R AR R AN TN R RN R AR R RN RN A RN A AN E RS AN R AR W SR T R AN TR/

Byte unpack(ct_entry)
Byte ct_entry;
{

int pe.ne,serp_loc;

ne = ct_entry & ne_mask; /* ne number is last three bits */
pe = ct_entry >> pe_shift; /* shift out ne number for pe number */

serp_loc = (ne * Pe _per_ne) + pe;
return(serp_loc};
}

/t'.."""'i".'t.'..t vid found IAZ2Z X222 222122222l Xt d)]

* this function searches the vids_used array for the vid it *
* it is passed. *

'.Q'.'t"'.."Q""t."""f.t"i.tt'i"..."'.t'l"""t"./

Boolean vid_found(vid)
! Byte vid;

w {

t int 4;

i Boolean found = False;

for (1 = 0; 4 <= (gnum_vids =~ 1); 1i++)

if (vid == gvids_used[i])
found = True;

215

return{found);
}

- ——

/.'ttt.ti!tiltfittt set message (2222228822222 2222222 2]
* sets the correct message information in the cmessage *
* array. This is the information which the scoreboard must *

* provide after it has processed the serp. *
‘t'ittii.t.ttiit'tti't'ltttt.tti.tt'titt'ﬁt.tttttit.""'-'./

void set_message (num_messages,svid,dvid,ex_class,obne_syndrome,
ibnf_syndrome)
int *num_messages;
Byte svid,dvid,ex_class,obne_syndrome, ibnf_syndrome;
{
int i,redun_level;
struct message_struct *s;

s = &¢(gcmessage[*num_messages));

s->source_vid = svid;
s->dest_vid = dvid;
s->ex_class = ex_class;
s->obne_to = obne_syndrome;
s->ibnf_to = ibnf_syndrome;

for (1 = 0; i <= (Max_redun_level - 1); i++)
{
s->sources(i] = 0;
s->dests[i] = 0;
}
/* set sources array to pe's in source vid */
redur_level = ct[svid * Bytes_per_CT_ entry + Redun_loc]
¢ redun_level mask;
for (1 = 0; i <= (redun_level ~ 1); i++)
s->sources(i] = ct[svid * Bytes_per_CT_entry + Base_pe_loc + i];

/* set dests array to pe's in destination vid */
redun_level = ctidvid * Bytes_per CT_entry + Redun_loc]
¢ redun_level mask;
for (i = 0; i <= (redun_level - 1); i++)
s->dests(i] = ct(dvid * Bytes_per CT_entry + Base_pe_loc + i};
}

/t't’tt"t..tt'."' set bytes LA 2RSS 2222X2 8RR XXX R L4
* this function sets the dest_vid field of svid to dvid, the *
* ibnf bits of svid, and the obne bits of dvid. It then builds *

* a reference message for error checking. *
ttt!'tt.l""it'at.'t."t"tt.tt't'ﬁitt't‘t-"O"i"'.'iii'.'.tt/

void set_bytes(svid,dvid,obne,ibnf,ex_cl|ss)
Byte svid,dvid;
Bit obne[Max_redun_level], ibnf(Max_redun_level);
Byte ex_class;
{

int i,redun_level,pe;

/* set to,dest buffer,obne,exchange class, and dest vid for source */
redun_level = ct[svid * Bytes_per CT_entry + Redun_loc]
’ ¢ redun_level mask;
[for (i = 0; i <= (redun_level - 1); i++)
{
pe = unpack(ct[svid * Bytes_per CT_entry + Base_pe_loc + 1}):
serp{(pe * Bytes_per_ SERP_entry) + Obne_loc] |= obneli];
serp((pe * Bytes_per SERP_entry) + Class_loc] |= ex_class;

216

serp|(pe * Bytes_per_ SERP_entry) + Dvid_loc] = dvid;

}

/* set ibnf for destination */

redun_level = ct(dvid * Bytes_per CT_entry + Redun_loc])
& redun_level mask;

for (i = 0; i <= (redun_level - 1); 1i++)

{
pe = unpack(ct(dvid * Bytes_per_ CT_entry + Base_pe_loc + i]);
serp((pe * Bytes per SERP_entry) + Ibnf_ loc) I= ibnf{i);

}

i
/..."'.'.-i.'i."'t't generate—serp \AS AR 222222222222 X222 223

* this function actually produces the serp based on the *

* info contained in the serp_source array -
""t't'itt'tttt't't'iﬁi"tt.tttit't'"ﬁti.t'ti'.t'ttt'tt'it/

void generate_serp(num_messages)
int *num_messages;
{
struct serp_source_struct *s;
int i, J,redun_level;
Boolean obne_unan, ibnf_unan,message_to_send;
Byte obne(Max_redun_level], ibnf [Max_redun_level];
Byte ex_class = 3;

p - =

/* masks array is used to mask out all but one bit cf the obne */
/* and ibnf timeouts */

*num_messages = 0;
for (i = 0; 1 <= (gnum_vids - 1); i++)
{
s = &gserp_sourceli];
obne_unan = True;
| ibnf_unan = True;
message_to_send = False;

redun_level = s->srd;
for (J = 0; J <= (redun_level - 1); j++)
{
if (((s->obne_to) & gpmasks([j)) > O)
obne{j] = obne_mask;
else
{
obne{3j] = O;
obne_unan = False;
}
}

redun_level = s->drd;
for (J = 0; J <= (redun_level - 1); 3j++)
{
if (((s->ibnf_to) & gpmasks{34)) > 0)
ibnf (3] « ibnf_mask;
else
{
ibnf(j) = ©;
ibnf_unan = False;
}
)
message_to_send = obne_unan && ibnf_unan;

set_bytes(s->source_vid, s->dest_vid, obne, ibnf,ex_class);

217

/* increment serps_done variable */
s->serps_done += 1;

if (message_to_send)
{
set_message(num_messages, s->source_vid, s->dest_vid,ex_class,
s->obne_to, s->ibnf_to);
*num_messages += 1;
gfree_sources|[s->source_vid] = True;
gfree_dests(s->dest_vid] = True;

)

FALAAAAS R LA A AL AL AR LS qet fAULL St ndd d R A a R AN RN AR RRN NS

* get_fault decides which member of a vid is too be faulty *

* and generates the proper timecut syndrome. -
t't't'fi'.t.tti't.'ii-.t..t't'.t't'ii't'tiit"'i'.ﬁittit'i.i./

void get flow_control(vid,redun_level, fault, syndrome)
Byte vid,redun_level;
Boolean *fault;
Byte *syndrome;
{
int i, rnumber, faulty pe,position,non_faulty_syndrome;
Boolean inject_fault = False;

/* create the default syndrome */

*syndrome = 0;

for (i = 0; 1 <= (redun_level - 1); i++)
*syndrome |= gpmasksiil];

/* determines whether to inject a fault or not */
rnumber = random() & Oxf;
if (rnumber <= Prob_fault)

inject_fault = True;

/* make sure only one fault per message */
if (inject_fault && !(*fault))
{
if (debug_level >= 3)
printf ("NOTICE! Fault injected in vid = 8i\n",vid);

*fault = True;

num_faults += 1;

switch(redun_level)

{

case 1: faulty pe = 1;
break;

case 3:
faulty pe = random() & Ox03;
if ((faulty pe == 3) || (faulty_pe == 0)) faulty pe = 4;
break;

case 4:
faulty pe = random() & Ox03;
if (faulty pe == 0) faulty pe = 1;
else if (faulty pe == 1) faulty pe = 2;
else if (faulty pe == 2) faulty pe = 4;
else if (faulty pe == 3) faulty_pe
break;

L}
®
~

}
/* set the faulty pe's presence bit to zero */

*syndrome "= faulty pe;

}

/'t*t'titt.tttttt' set serp source entry L2222 2222 RS2 R 2]
* this function creates an entry in the serp source array *

* for the source_vid it is passed.
.tti"'iiitii.'i.'ﬁ"t"tt'.'ttitiiitittti’tttﬁi'ﬁ.tt'itﬁtttt/

*

void set_serp_source_entry (source_vid,dest_vid, location)
Byte source_vid,dest_vid;
int location;
{
struct serp_source_struct *s;
Boolean *fault = False;

s = ggserp_source(location};

s~>source_vid = source_vid;

s->dest_vid = dest_vid;

s->srd = ct[source_vid * Bytes_per CT_entry + Redun_loc]
& redun_level_mask;

s=>drd = ct[dest_vid * Bytes_per CT entry + Redun_loc]
& redun_level_mask;

get_flow_control(source_vid,s->srd,&fault,&(s->obne_to));
get _flow_control(dest_vid, s->drd, {fault,& (s->ibnf_to));

s->serps_done = 0;
)

/"'.ﬁtl."tt".'tﬁ qenerate serp source LA 2222222222 RZRZ R}

* generates a new serp by randomly sending messages between

* VID's. It builds the correct message-structure too.
'QQt"'tn""'!'t”"’ﬁ"tt"'t""ttttit"t'ﬁttiﬁi'titiﬁt'.'/

*

w

void generate_serp_source()
{
Boolean got_source,got_dest,all_done;
int i,source_vid,dest_vid, pot_dvid,place;

got_source = False;
got _dest= False;
all_done = False;
place = 0;
num_faults = 0;

/* initialize serp to 0 */
for (i = 0; i <= (Pe_per_ne * Num ne * Bytes_per SERP_entry); i++)
serp(i]} = 0;

while (!(all_done))
{
while (! (got_source))
(
it (gfree_sources([gvids_used{place]})
{
source_vid = gvids_used[place);
gfree_sources(source_vid] = False;
got_source = True;
}
else place += 1;
if (place == gnum_vids)
{
got_source = True;

219

all_done = True;
)
}

while (!(got_dest) && !(all_done))
{

pot_dvid = random() ¢ Oxff;

if (vid_found(pot_dvid))

if (gfree_dests{pot_dvid})

{

dest_vid = pot_dvid;

gfree_dests{dest_vid] = False;

got_dest = True;

}
)
it (!(all_done))

set_serp_source_entry(source_vid,dest_vid, place);
got_source = False;
got_dest = False;

}

VAALRAAR LR S KL ET R R R R a gel SeYPp *AF A I N e rkra N w kAN R G AR TR R TR R,

* generates a new serp when called
tt't't'titt"'i"tt'i".fltt'.tt't"iti"'*tttttt'tt!'i'it'tttt'tt‘t't,

*

voia get serp (num_messages)
int *num_messages;
{
static Boolean generate_ct = True;

if (generate_ct) /* generate a new ct? */
{
init_arrays();
Calculate_ct ();
get_table();
generate_ct = False;
if (debug_level >= 1)
check_ct (};
}
if (generate_faults)
{
generate_serp_source();
if (debug_level >= 1)
Printf{"\nNOTICE! number of faults = Si\n®, num_faults);
qenerate_serp(num_messages);
}
else
{
generate nf_serp(num_messages);
}

10.8.6. File vote.c

This file contains functions to vote the SERP to arrive at correct messages. It is very
similar to the code in Appendix 10.2.

¢include "sbdefs.h"
#include <math.h>

ASEAAAAALL L AL AL LSRR file vote.C "hxrsddtddnddr b A b hdtdArtrrwnn

* This file contains the source code for voting the SERP, keeping *

* track of timeouts, and writing the results into voted_serp. *
t'.'i'.ﬁQ'tttﬁt'ti'tt'tiﬁ.tt!ﬁ‘t'iiiii'Qit.it..ﬁi"'ititt‘tiitttti/

/"Q"'!t'ttt""t't"Ii'tt'i"'i"ﬁ'iﬁitti"*’z 'ﬁiﬁtﬁ.'t'i’ti"t/

/* vote is a generic vote function which will vote up to 5 */
/* items passed to it. It returns three flags and the result. */
/* The simplex flag signals that the presence bits indicate a ./
/* simplex configuration. */

IARAASALEARASSSARAR LSRR Sl il ARttt il il il ittt sl st

Byte vote (vote_values,redun_level,unan)

Byte vote_values[Max_redun_level];

int redun_level;

Bit *unan;

{
Byte a,b,c,d;
Byte result,int_resl,int_res2; /* int=intermediate */
Boolean AB,BC,CD;

= vote_values[0];
vote_values|[1l];
= vote_values([2];
= vote_values[3];

a0 oow
]

AB = (a == b) ? True : False; /* used for flags */
BC = (b == ¢) ? True : False;
CD = (c == d) ? True : False;

switch (redun_level)

{

case 4§:
*unan = (AB && BC && CD) ? True : False;
result = (aébéc) | (a&céd) | (beced) | (aebkd);
break;

case 3:
*unan = (AB && BC) ? True : False;
result = (a ¢ b) | (b & ¢) | (a & ¢c);
break;

case 2:
printf ("ERROR! Voted a duplex\n");
break;

case 1:
*unan = True;
result = a;
break;

}

return(result);

}
/* end vote */

/'.'"..i.."."".tt"i.""'.'.'."'i"".Q"""..'..tt.""""t"ﬁ/

221

!

/* read_timer reads and returns the current timer value. */
/t.ttﬁ'!iﬁlt.t’t.ti"iti'it'tttt!.ii.ttttﬁt.*iit-"'t'tt.ti.tt.ttitil't/

int read_timer ()
{

return (to_clock);
}

/..ii'.‘."""'i'.‘.t't'iit.it't'i't‘it'i‘ﬁtt*it'i"ﬁ"ti""."-i.t"/

/* check_to checks to see if the timeout value (to_value) has been */

/* reached. If it has, then it returns a true value for to_reached. */
/'ii.'t*lt.!ti.i"ﬁ"'.'.tt't"'ﬁ'titi*ii"'*itit"...t"'ttt'ti"‘.'i’/

Boolean check_to (vid,to_value,timer_value,init_timer_value)
Byte vid, to_value,*timer_value,*init_timer_value;

{
Boolean to_reached = False;

*timer_*ralue = read_timer();
if (to[vid] == 0)
to[vid] = *timer_value; /* TO set? then set a timeout */
else if ((*timer_value - to[vid])) > to_value)
{
printf ("NOTICE! timeout for vid %i reached\n",vid);
to_reached = True;
*init_timer_value = to(vid];
tolvid] = C;
}
return (to_reached);
}
/* end check_to */

/'t'"t"'"l"'t""‘t"Q"'It'ttt!ﬁ'i'i'"tt"'ttititfitt'i'il’*itttt"/

/* fc_vote performs the flow control vote function (i.e. OBNE */
/* and IBNF). If a timeout is reached, it clears that pe's syndrome */
/* bit and sets the result to true (ibnf or obne). */

/'t't.""'.'"t"'l"'ti"'i.ti't'i'iti'."'ttﬁ't"'t"t'i"‘*tti'ti'/

void fc_vote (vid,vote_values,redun_level, to_value,result, fault,
syndrome,timer_value,init_timer_value)

Byte vid,vote values([Max_redun_level};
int redun_level;
Byte to_value, *result;
Boolean *fault;
Byte *syndrome,*timer_value,*init_timer_value;
{
Boolean unan;
int {;
Byte old_result;

*result = vote (vote_values,redun_level, gunan);

/* set default syndrome */

*syndrome = 0;

for (i = 0; i <= (redun_level - 1); 1i++)
*syndrome |= gpmasksi{i];

if (!(unan) &¢ (*result !'= 0)) /* check for timeouts */
{
old_result = *result;
*result = 0;
*fault = check_to (vid,to_value,timer value,init_timer_value);
if (*fault)

/* reset obne (or ibnf) bit and zero proper presence bit */
*result = old_result;

/* clear the offending pe's syndrome bit */
for (1 = 0; 1 <~ (redun_level - 1); i++)
if (vote_values{i] != =*result)

*gsyndrome "= gpmasksii];

else /* check for illegal transitions */
/* to be determined */

}
}
/* end fc_vote */

VAAAAS AL AL AL ALl A RARElE il iRl il llldll il iy

/* vote_other is the function which votes the destination */
/* VID and exchange class fields of the SERP. */

/'I".ﬁ"tﬁ.'tt".iiil'tttﬁi'tt"tiitﬁ“*'t'."ﬁ‘i*i.ittt"ﬁ.'t/

void vote_other (vote_values,redun_level,result,obne, fault)
Byte vote_values[Max_redun_level};
int redun_level;
Byte *result;
Boolean *fault;
{
Bit unan,maj;

*result = vote (vote_values,redun_level, &unan);

if (!unan && obne) +*fault = True;
}
/* end vote_other */

/"i"t't"Qﬁ!""i'.Qti"tﬁt't"ttttﬁi'i‘ﬁt""ttl"'it".iilt/

/* write_result writes the overall, voted SERP entry for ~/
/* each VID into the voted_serp table. */

/.tt'!t'tt"'titi'""i'i.'t'i""'t'ﬁt*ﬁtﬂ.*‘ﬁ'tﬁi'.tt'i"*"'/

void write_result (vid,to_value,timer_value,init_timer_value,obne, ibnf,
ex_class,dest_vid, obne_syndrome, ibnf_syndrome)

Byte vid,to*value.timer_value,init_timer_value,obne,ibnf;

Byte ex_class,dest_vid,obne_syndrome, ibnf_syndrome;

{

gvoted_serp[vid * V§ + VS5 _to_loc] = to_value;
if (obne)

gvoted_serp(vid * VS + VS_obne_loc] |= VS_obne_mask;
if (ibnf)

gvoted_serplvid * VS + Vs_ibnf_loc) I= VS_ibnf_mask;

gvoted_serp{vid * Vs + VS_class_loc) I= ex_class;
gvoted_serplvid * VS + VS_dvid_loc) = dest_vid;
gvoted_serp(vid * VS + VS obne_syn_loc) |= obne_syndrome;
gvoted_serp|vid * VS + VS_ibnf_syn_loc] |= ibnf_syndrome;
gvoted _serp(vid * VS + VS_timer_loc] = timer_value;
gvoted_serpivid * VS + VS_init_timer_loc] = init_timer_value;

}

/'Q't"'tﬁtt".t".'t".' vote ,erp (AL RA L AL 2 222 E 22222 X2 R
* vote_serp recejves the serp entries from feed_voter and votes *

* them when told to. It writes the overall result for each VID =
* into the voted_serp array. A

ttt'."i.'ﬁ.""i'iiitttt.‘it"t"'ti"t.""tﬁ'ﬁ""'t'."i"t'/

void vote_serp (vid,serp values,redun_level,to_value, fault)

Byte vid, serp_values[Max_redun_level * Bytes_per_ SERP_entry];

int redun_level;

Byte to_value;

Boolean *fault;

{
Byte i,vote_values(Max_redun_level],obne_syndrome, ib f_syndrome;
Byte timer_value,init_timer_value,obne, ibnf;
Byte ex_class,dest_vid;

[RRA A AR AR R E AR R RNN AR RN get and vote OBNE bits */
for (i = 0; i <= (Max_redun_level - 1); i++)
vote_values[i] = serp_values|i * Bytes_per SERP_entry + Obne_loc]
& obne_mask;

/* NOTE!! timer value will take on the timer value at the time */
/* the ibnf is voted, NOT the obne */
fc_vote (vid,vote_values,redun_level,to_value,5obne,fault,
éobne_syndrome, étimer_value, ¢init_timer_value);
if ((*fault) && debug_level >= 3)
printf ("FAULT in OBNE vote\n");

*fault = False;
/'ttttt'ttttti.tt"i't'it.it'tt-ﬂt'ttt'tﬁtt.tti'ii't'tti*'t/

/It"t't't'!'tt',t"'!'t get and vote IBNF bits */
for (i = 0; 1 <= (Max_redun_level =~ 1); i++)
vote_values|i] = serp values|[i * Bytes_per SERP_entry + Ibnf_loc]
& ibnf _mask;
fc_vote (vid,vote_values,redun_level,to value, ¢ibnf, faule,
&ibnf_syndrome, stimer_value, ¢init_timer_value);
if ((*fault) && debug_level >= 3)
printf ("FAULT in IBNF vote\n");
*fault = False;

VAARARSA AL AR RS AR AR AR S AR RN SRl ARl

ARAR SRR XL R R RS R 22 22 2% get and vole exc?ahgo class %/
for (i = 0; i <= (Max_redun_level - 1); i++)
vote_values (i) = serp_values[i * Bytes_per SERP_entry + Class_loc]
& class_mask;
vote_other (vote_values,redun_level, éex_class,obne, fault);
if ((*fault) && debug_level >= 3)
print £ ("FAULT in exchange class vote\n");

*fault = False;
/titi'ttl'."ittcti'iti"'-'Q'ttit'.t.tt'i't'i'fiﬁt!t't'i't/

VALAAALLALS AL A SRS S]] get and vote destination VID */
for (i = 0; 1 <= (Max_redun_level - 1); i++}
vote_values[i] = serp_values(i * Bytes_per_ SERP_entry + Dvid_loc):
vote_other (vote_values,redun_level, édest_vid,obne, fault);
1f ((*fault) && debug _level >= 3)
printf("FAULT in dest VID vote = %i\n",dest_vid);

*fault = False;
/'.Qii.tt"tt"tt"it'itt‘!.ii"""t""ii"'..t.'.ttt!ttl/

write result (vid,to_value,timer_value,init_timer_value, obne, ibnf,
ex_class,dest_vid,obne_syndrome,ibnf_syndrome);

}

/‘i*""t"".'*""'. teed voter LSRR ARER XA RRRRR2Rd Rl R]d

* feeds the serp voting function one serp value at a time using *
* a vid-order trans.ation table *

"Q".i"t'it"t"t‘ttt'tﬁ.itﬁ.i"'i"i"'i'Q"tt-t"'i""'...ﬁi/

void feed_voter()
{
Boolean fault;
int i, 3j,num_entries,serp_place,vid_place,current_vid, fault_mask;
Byte redun_level,serp_values(Max _redun_level * Bytes_per_ _SERP _entry);
Byte to_value;

/* feed the voter one vid at a time */

num_entries = gnum_vids + (Pe_per_ne * Num_ne};

serp_place = 0;

vid_place = 0;

fault = False;

while (serp place <= num_entries)

{
current_vid = gvids_used(vid placel;
redun_level = ptov_table(serp_place];
vid_place += 1;
serp_place += 1;

/* iterate over the redundancy level */
for(i = 0; i <= (redun_level - 1); i++)
{
/* accumumulate each PE's entry */
for(j = 0; 3 <= (Bytes_per_SERP_entry - 1); j++)
{
serp_values[Bytes_per_ SERP_entry * i + j] =
serp|(ptov_table(serp_place] * Bytes_per_ SERP_entry + jj;
}
/* move to next pe */
serp place += 1;
}
to_value = ctlcurrent_vid * Bytes_per CT_entry + To_loc};
vote_serp {current_vid, serp_values,redun_level,to_value,§fault);

10.8.7. File send.c

This file contains functions to cycle through the voted SERP memory and “send” all
messages contained therein.

#include "sbdefs.h"

/..'Iii".tﬁ"."." file send.c KRR T A AR R AT R R A NN RN R AN N SRk &

* this file cycles through the voted serp, sending all valid *

* messages *
'.tt'itt'i'itt.tit"'l'ttﬁit..t't"tﬁ""tﬁﬁiﬁt't..ii."'ﬁ'.itt'/

/'tt'tl'#*-t*t"'i create message (2222222822828 22222222 R 2

* this function creates the message packet when called by send *
t"ttttitii't'ti'i't't't't!t.tt.itititit'tlt.t'iii'tttt'tt.itt'/

void create_message(source_vid,dest_vid,ex_class,message_number,
obne_syndrome, ibnf_syndrome,timer_value,
init_timer_value)
Byte source_vid,dest_vid,ex_class;
irt message_number;
Byte obne_syndrome,ibnf_syndrome,timer value,init_timer_value;
{
struct message_struct *s;
Byte redun_level;
int i, 3:

s = &gmessage[message_number];

s->source_vid = source_vid;
redun_level = ct|source_vid * Bytes_per_CT_entry + Redun_loc]
& redun_level mask;
for(i = 0; i <= (redun_level - 1); i++)
s->sources (i) = ct{source_vid * Bytes_per CT_entry + Base_pe_loc+1];

s->dest_vid = dest_vid;
redun_level = ct(dest_vid * Bytes_per CT_entry + Redun_loc]
& redun_level mask;
for(i = 0; i <= (redun_level - 1); i++)
s->dests(i] = ct([dest_vid * Bytes_per CT entry + Base_pe_loc + i];

s->ex_class = ex_class;
s->obne_to = obne_syndrome;
s->ibnf_to = ibnf_syndrome;
s->timer_value = timer_value;
s->itv = init_timer_value;

)

/'.i".'..'."""’"'ﬁ".l" 'end NARERAREAN T TN AINEN TR NIRRT AR AR RN e

* send cycles through the vote serp array, sending all valid *

* messages. *
..ﬁ"'.t-t""'...t.t"t"'t'ttii.'t..tt'tt'ttt't't'it't.it'it'ﬁ'/

void send(num_messages)
int *num_messages;
{
Boolean all_valid_sent = False;
Byte source_vid,dest_vid,ex_class;
Bit obne, ibnf,processed;
Byte obne_syndrome,ibnf_syndrome,timer_value, init_timer_value;
int processed vids = 0;

int current_vid_place = 0;
*num_messages = 0;

/* this is the vid where send begins to look for messages */
source_vid = gvids_used{current_vid_placel;

while(!(all_valid_sent))
{
processed = gvoted_serp[source_vid * VS + V5 processed_bit loc])
& VS_processed_bit_mask;
if (!(processed))
{
processed_vids += 1;
gvoted_serp{source_vid * VS + VS_processed bit_loc]
I= VS_processed_bit mask;
obne = gvoted_serplsource_vid * VS + VS_obne_loc] & VS_obne_mask;
if (obne)
{
dest_vid = gvoted_serp(source_vid * VS + VS_dvid_loc];
ibnf = gvoted_serp(dest_vid * VS + VS_ibnf_loc] & VS_ibnf_mask;
if (ibnf)
{
if (debug_level >= 3)
{
printf("Sending message %i\n", *num_messages);
printf(" Source vid = %i\n",source_vid);
printf (" Dest vid = $i\n\n",dest_vid);
}
ex_class = gvoted_serp(source_vid * VS + VS_class_loc]
& VS_class_mask;
obne_syndrome = gvoted_serplsource_vid * VS + VS_obne_syn_loc]
& VS_obne_syn_mask;

/* ibnf syndrome comes from dest_vid */
ibnf_syndrome = gvoted_serp{dest_viu - V3 + VS_ibnf_syn loc}
& VS_ibnf_syn_mask;
timer_value = gvoted_serp(source_vid * VS + VS_timer_loc);
init_timer_value = gvoted_serp(source _vid * Vs +
VS_init_timer_loc);
create_message(source_vid,dest_vid,ex_class,*num_messages,
obne_syndrome, ibnf_syndrome,timer _value,
init_timer_value);
*num_messages += 1;
}
}
}
if (processed_vids == gnum_vids)
all_valid_sent = True;

if (current_vid_place > (gnum_vids - 1))
current_vid_place = 0;

else current_vid_place += 1;

source_vid = gvids_used|current_vid_placel:

- —

10.8.8. File check.c

This file contains functions to check the messages found by send.c against those
written by nf_serp.c or serp.c.
#include "sbdefs.h"

#define MAX(a,b) ((a >= b) ? (a) : (b))

FAAAAAR AL S A RS0 A sl dld get vid_position LA AR A2 A2 222222222 sR]

* this function returns the index in the vids used array for the *
* vid passed to it. *

tii't"l"t't.t't.'ittttt'l"l‘t'Qﬁi*ﬁt.t'!‘...iﬁ.tﬁiit-*tiiiti.'tit/

int get_vid_position(vid)
Byte vid;
{

int 4 = 0;

while (i < gnum_vids)
if (gvids_used([i] == wvid)
return(i);
else ++i;

}

IASAALAR SR AL AL AL LSS BN T-Yel SR IS N LAASLRLE LA S E 2RSSR RS

* this function checks for correctness all the messages not found *

* in the cmessage array *
I.'t"'.'.""'t"t't'tt""t'l"i'lti""'t'tiit.itii't"tt.t.t!t./

void check_others(num_messages,marked messages)

int num_messages,marked_messages[50];

{
struct message_struct *m;
struct serp_source_struct *ss,*sd; /* ss = source pointer */
int i; /* sv = dest pointer */
Booclean error;

for (1 = 0; i <= (num_messages - 1); i++)
{
gfree_sources[gmessage(i}.source_vid] = True;
gfree_dests(gmessage(i).dest_vid] = True;
if (!(marked_messages[i]))
' ({
error = False;
m = &gmessage{i];
ss = &gserp_source[get_vid_position{m->source_vid)};
sd = égserp_source(get_vid_position(m~>dest_vid)};

/* the first IF statement decides which to_value to use */
, /* in checking for premature messages. */

if (m->obne_to != ss->obne_to)

i /* use source to_value */

it ((m->timer_value - m->itv) < ss->to_value)

{ .
printf("ERROR! message %i sent prematurely\n»,i);
error = True;

)

else if (m->ibnf_to != ss->ibnf_to)

/* use dest to_value *«/

if ((m->timer_value - m=->itv) < sd->to_value)

print £ ("ERROR! message 81 sent prematurely\n®,i);
error = True;
}

; if (m->obne_to != ss->obne_to)
{
printf ("ERROR! message $i has an incorrect OBNE syndrome\n",i);
error = True;
}
if (m->ibnf_to !~ ss->ibnf_to)

{
printf ("ERROR! message %1 has an incorrect IBNF syndrome\n®,i):;

error = True;
}

if (error)

{

printf (" sv = %i\n",m->source_vid);
printf(" dv = $i\n",m->dest_vid);

}

—— e e -

}

AAAAR AR SRS R s A2 R R 2222 R R R R A L PR L R R NN

* this function compares the unanimous message list with the one *

* generated by the scoreboard. It reports all inconsistencies. .
* It then calls check_others to check any remaining messages for *

* correctness, *
tt't'lt"'t.'t'i'tt""."t"i'ii'i't'l"til't"iiiQ’!Q't'i'tlt.!.t,

check _messages (cnum_messages,num_messages)
int cnum_messages,num_messages;
{
. struct message_struct *s,*cs;
' int i,diff,place;
Bit marked_messages(50);
Boolean found,message_not_found;
Byte source_vid, csource_vid, cdest_vid;

for (i = 0; 1 <= 50; i++)
marked_messages (i) = 0;

if (cnum_messages !'= num_messages)
{
if (cnum_messages > num_messages)
printf ("ERROR! Not enough messages found!\n\n");
else
printf ("ERROR! Too many messages found!\n\n"):
}

if (debug_level >= 2)
{
printf("Simulation found %1 messages\n",num_messages);
printf("There are i necessary messages\n\n",cnum_messages);
}

/* check that all unanimous messages have been sent */
for (L = 0; i <= (cnum_messages =~ 1); {++)
{

found = False;

message_not_found =~ False;

place = 0;

cs = ggcmessagefi];
csource_vid = cs->source_vid;
cdest_vid = cs->dest_vid;
while (! (found))
{
s = §gmessage(place];
if ((s->source_vid == csource_vid) && {s->dest_vid == cdest_vid))
{
found = True;
marked_messages[place) = 1;
if ((s->obne_to) != (cs~>obne_to))
printf ("ERROR! obne syndrome incorrect for message $i\n®,i);
if ((s->ibnf_to) != (cs->ibnf _to))
printf ("ERROR! ibnf syndrome incorrect for message $i\n",i);
}
else place += 1;

/* check to see that array bounds haven't been reached */
if (place > num_messages)
{
found = True; /* exit from loop */
message_not_found = True; /* signal an error */
}

}

if (message_not_found)

{
printf ("WARNING' Message number %i not found\n®,i):;
printf(® source vid = %i\n",csource_vid);
printf(” dest vid = %i\n\n",cs->dest_vid);

checx_others{num_messages,marked_messages);

10.8.9. Fileio.c

This file contains input-ouput functions to write SERPs and CTs to an external file
for reading into the VHDL model.

#include "sbdefs.h”
#include <stdio.h>

/"."'.'.".'t'.ﬁ'I..i‘-tt".ﬁ.t'i'.'..""‘t.ﬁ.i"ﬁ"..'..'l

/* write_status */
/* This functjion writes the status line to the output file, */
/* It is called after each serp-message cycle. */

/.'.'."ﬁ..".'..".t‘l't.."i.ﬁittii'.'."ﬁ.‘.."t."'"'*tttt/

void write_status(output_file,regenerate_ct,num_vids,num_serp_entries,
num_messages)
FILE ®*output_file;
Boolean regenerate_ct;
int num_vids,num_serp_entries,num_messages;
{
fprintf(output_file,"%i %i %1 %i”,regenerate_ct,num_vids,num_serp_entries,
num_messages) ;
fprintf (output_file," Status line\n");
}

/ttt.'itt'.'tt-tt".tt"-t'tttttﬁttttttttttnttctcttittttitttt/

/* write_serp */
/* This function simply writes the SERP to a file. ~/

/'ft""i.ii"".'t"'i't‘!"'ii.t-it'tt"'i'i."t.'iti'ﬂt'i'/

void write_serp(output_file,num_serp_entries)
FILE *output_file;
int num_serp_entries;
{
int place,i;
int obne,ibnf,dvid,broadcast,packet_type,ex_class;

for (1 = 0; i < num_serp_entries; i++)

{
/* write out the complete SERP entry for each PE */
place = i * Bytes_per_ SERP_entry; /* a place holder */

) obne = (serp(place + Obne_loc] ¢ obne_mask) ? True : False;
' ibnf = (serp(place + Ibnf_loc] & ibnf_mask) ? True : False;
dvid = serp(place + Dvid_loc];
broadcast = False; /* no broadcasts for now (30 Jan 91) ¢/

packet_type = 0;
ex_class = 0;

/* write the values to the file */

i
i fprintf(output_file,"%i %1 %i %1 81 &i\n",obne,ibnf,dvid, broadcast,
packet_type,ex_class);

)

/"..."..".'".'.".."".."....Q".'QQ..'."-'....'.""',

/* write_ct */
/* This function writes the ct to the output file in the ./
/* pre-determined format. (see documentation) */

/i.""'.".Q."'.."""l"'"'..'Q"'."i'i.""""t‘.'."/

21

void write_ct(output_file)
FILE *output_file;
! {
int 4,3,loc;
int vid_number, redun,presence,timeout;

for (i = 0; 1 < Num_vids; i++)
{
/* calculate all the entries for a file line */
vid_number = ct[i * Bytes_per_CT_entry];
redun = ct(i * Bytes_per CT_entry + Redun_loc] & redun_level mask;
timeout = ct{i * Bytes_per CT_entry + To_loc);

/* only print a VID's entry if the redun is non-zero */
if (redun)
{
fprintf(output_file,"%i ",vid number);
fprintf(output_file,"$i ",redun);

presence = ct[i * Bytes_per CT_entry + Presence_loc]
>> presence_shift;
for (j = 0; j < Max_redun_level; j++)
if (presence & gpmasks(j])
fprintf(output_file,"1 ");
else
fprintf(output_file,"0 ™)

for (3 = 0; 3 < redun; j++)

{

loc = urpack(ct[i * Bytes per_ CT_entry + Base_pe_loc + 3]);
fprintf (output_file,"%i ",loc);

)

fprintf (output_file,"8i ",timeocut);
fpri~tf(cutput_<Llle,"\n");

}

/'t"'t""-t'tt'tt'tnt"t'tttt'tti"t"-tttattlitttttctt'.tt/

/* write_messages */

/'nttt-'tttttt'.'tt-t'ttt'tttt'tttt'tt't""t"ttt'tittttittn/

void write_messages(output_file,cnum_messages)
FILE *output_file;

int cnum_messages;

{

)

10.8.10. File main.c

This file contains the main() function which takes care of the command line
switches.

tinclude "sbdefs.h"
#include <sys/time.h>
#include <stdio.h>

void increment_timer ()
{

to_clock += random() & 0x07;
)

VAARAA A AR R 2R AR ARl R parse commands *ed AR RAREACA ARSI RNNR AT R RN

* This function parses the command line for default overrides of *

* num_rounds, generate_faults, and debug_level. *
".i'tltlt"t't'l'tt't-"'tttt"'ti"l"""Qtt"t.t"t"t'it'tli/

void parse_commands (argc,argv,seed,operation,file name)
int argc;
char *argv(];
int *seed;
char *operation,file name(10};
{
char *str;

while (--argc > 0}
{
str = argv(argc);
if (1 (str(0) == ‘'=1))
else
{
switch(str{1))
{
case ‘'d':
it (sscanf(str,"S*c¥*cAd”, tdebug_level) !'= 1)
{
printf("Bad debug level argument\n"):;
exit (1);
}
break;
case 'n':
if (sscanf(str,"¥*c8¥*c¥d", énum_rounds) != 1)
{
printf("Bad number of rounds argument\n®);
exit(1);
}
break;
case 'f':
generate_faults = True;
break;
case 's':
it (sscanf(str,”s*cté*ctd", seed) !~ 1)
{
printf ("Bad seed argument\n");
exit(1);
}
break;
case ‘'o':

/* tell the program to send the ct and serp to a file */
*operation = 'o';
/*if (sscanf(argv([--argc],"ss",file_name) != 1)
{
printf ("Bad output file name\n");
exit (1);
y*/
break;
}

}

#define default_file "test.i"
f#define seed_file_name "seed.last"

main (argc,argv)
int arge:
char *argv(};
{
int i,seed = 0;
int num_messages,cnum_messages;
int num_serp_entries, serp_round,numbers;
char operation,*file_name,*ptime_string,time_string[26];
struct timeval time;
struct timezone tzp;
FILE *out_file,*seed file;

/* get the default seed frc' _he random number generator */
numbers = gettimeofda, .f _me,é&rzp);

/*ptime_string = time_string;

ptime_string = asctime(time);*/

seed = time.tv_c-c & Oxff;

/* set defau.is and interpret the command line arguments */
debug_level = 1;

num_rounds = 50;

generate_faults = False;

operation = ‘'s*;

file_name = default file;

parse_commands (argc, argv, éseed, doperation, file_name);

/* seed the random number generator */
for (i = 0; i <= seed; i++)
numbers = random() & Oxff;

/* write the seed to a file */
if ((seed_file = fopen(seed_file_name,"a")) == NULL)
printf("Error opening seed file -- continuing\n\n");
else
{
fprintf(seed_file,"seed = %i\n",seed);
fclose (seed_file);
}

switch(operation)
{
case 'o':
/* ‘o' for output to a file */
printf("8%s\n",file name);
r if ((out_file = fopen(file_name,"w")) == NULL)
{
printf("Error in opening file -%s-\n",file_name);

exit (1);
}
increment _timer ();
num_serp_entries ~ Pe_per ne * Num_ne;
get_serp(&cnum_messages);

write_staCus(outﬁfile,True,gnum_vids,num_serp_entzies,cnum_messages);
write_ct(out_rfilej;

write_serp(out_file, num_serp_entries);
write_messages(out_file, cnum_messages);
for (i = 0; i < num_rounds; i++)

{
get_serp(écnum_messages);
write_status(out_file,False,gnum_vids,num_serp_entries,cnum_messages);
write_serp(out_file,num_serp_entries);
write messages(out_file,cnum_messages);

}

fclose(out_file);

break;

case 's':

/* *s' for simulate */

serp_round = 0;

for (i = 0;i < num_rounds; i++)

{
increment_timer ();

get_serp(&cnum_messages);
serp_round += 1;

if (debug_level >= 1)

{

DL ANt (o R A R N A RN AT PN PR E R AT RN RN I RN R AR TN R RN R TR kW R\ n) o
printf("Round = %i\n",serp_rcund);

}
feed_voter(};
send (énum_messages);

printf (n'ttt'tt-ttﬁcttt'tnatt-ttt-tttn'ittttt'ifﬁtttitiigc'\n") ;

check_messages (cnum_messages,num_messages) ;
clear_voted_serp{);

10.8.11. makefile

CFLAGS = -g

sb: lo.o0 vote.o serp.o nf_serp.o ct.o send.o check.o main.o
cc $(CFLAGS) -o sb io.0 vote.o serp.o nf_serp.oc ct.o send.o check.o main.o

ic.o0: ilo.c sbdefs.h config.h
cc -c S{(CFLAGS) lo.c

vote.o: vote.c sbdefs.h config.h
cc =-c ${(CFLAGS) vote.c

serp.o : serp.c sbdefs.h config.h
cc -c¢ $(CFLAGS) serp.c

nf_serp.o : nf_serp.c sbdefs.h config.h
cc -c S(CFLAGS) nf_serp.c

ct.o0 : ¢t.c sbdefs.h config.h
cc =-¢ S$(CFLAGS) ct.c

send.o : send.c sbdefs.h config.h
cc -c S$(CFLAGS) send.c

check.o : check.c sbdefs.h config.h
cc -c S$(CFLAGS) check.c

main.o: main.c sbdefs.h config.h
cc -c¢ S$(CFLAGS) main.c

clean:
rm % v v

rm *. .~

(Arm87]

[Bohm91])

[Butler89]

[Dolev82]

[(Harper87]

[IEEES88]

[Jain91)

[Lamp82]

[Mor91]

(RL86]

[RL89]

{Sak91]

[Syn90]
[VHDLS0]

[Wax89]

11. References

Armstrong, J. Chip-Level Modeling with VHDL, Prentice-Hall: Englewood
Cliffs, 1989.

Bohm, M. “Top-Down Design Using VHDL.” Tutorial, VHDL User’s Group
Spring 1991 Conference, Apr. 8-10, 1991.

Butler, B. “A Fault-Tolerant Shared Memory System Architecture for a
Byzantine Resilient Computer.” Master of Science Thesis, MIT 1989.

Dolev, D. “The Byzantine Generals Strike Again”, Journal of Algorithms,
Vol. 3, 1982, pp. 14-30.

Harper, Richard. "Critical Issues in Ultra-Reliable Parallel Processing.”
Doctor of Philosophy Thesis, MIT 1987.

Institute of Electrical and Electronics Engineers Inc. 1988. “IEEE Standard
VHDL Language Reference Manual,” IEEE Standard 1076-1987.

Jain, P. “Architectural Models are Key to System Level Design”, Electronic
Design, Mar 28, 1991, pp. §7-70.

Lamport, L. et. al. “The Byzantine Generals Problem”, ACM Transactions
on Programming Languages and Systems, Vol. 4, No. 3, Jul 1982, pp. 383-401.

Morton, D. “Hardware Modeling and Top-Down Design Using VHDL.”
Master of Science Thesis, MIT 1991,

R. Lipsett, E. Marschner, M. Shahdad. “VHDL - The Language,” IEEE
Design and Test of Computers, Vol 3, No. 2, April, 1986, pp. 28-41.

R. Lipsett, C. Schaefer, C. Ussery. YHDL : Hardware Description and
Design, Kluwer : Boston, 1989.

Sakamaki, C. “ The Design and Construction of a Data Path Chip Set for a
Fault Tolerant Parallel Processor.” Master of Science Thesis, MIT 1991.

Synopsys, Inc. “VHDL Compiler™ Reference,” July, 1990.

The VHDL Consulting Group. “VHDL System Design I,” Seminar, Jul 8-9,
1990.

R. Waxman, L. Saunders. “The Evolution of VHDL,” Information
Processing, 1989, pp 735-742.

